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Abstract. Internet service providers have resisted deploying Desfiervice
(DoS) protection mechanisms despite numerous reseangltsrasthe area. This
is so primarily because ISPs cannot directly charge usetBdaise of such mech-
anisms, discouraging investment in the necessary infretsire and operational
support.

We describe a pay-per-use system that provides DoS praeftti web servers
and clients. Our approach is based on WebSOS, an overlagtzashitecture
that uses reverse Turing tests to discriminate between isimad automated
processes that are part of an attack. We extend WebhSOS wittdartial-based
micropayment scheme that combines access control and payauthorization
in one operation. Contrary to WebSOS, we use Graphic TuregsT(GTTs)
to prevent malicious code, such as a worm, from using a usgcsopayment
wallet. Our architecture allows ISPs to accurately chargb alients and servers.
Clients can dynamically decide whether to use WebSOS, baséuk prevailing
network conditions.

1 Introduction

One of the main threats against the reliability of the Welvises are (DoS) attacks:
attacks that produce an excessive surge of bogus servicestsgagainst the target
forcing it to processing and (or) to link capacity starvatidhese attacks have dire
consequences for the target’s service viability, sincéaidity and quality of service
are of critical importance for the majority of the modernlore services.

Despite considerable research on devising methods foegfoh against such at-
tacks [15, 29, 28, 26, 22, 32], so far none of these mechartiasibeen widely adopted.
Moreover, it has been argued recently [11] that the netwar® Problem is inherently
impossible to solve without infrastructure support.

However, ISPs seem to be reluctant to deploy such mechaniswestment in the
necessary infrastructure and operational support areuliaged because such mecha-
nisms represent a poor value proposition: fundament&isicannot charge users for
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the use of such mechanisms. One possible solution would &tens with the ability
to both protect against DoS attacks and provide a servicepalscheme that would
allow ISPs to recoup their costs and support the continuedatiopn and maintenance
of this infrastructure. Such incentives would motivatetesumanufacturers to provide
appropriate support in their products.

In this paper, we describe a pay-per-use system that preiid8 protection for web
servers and clients. Our approach is based on WebSOS, dayebased architecture
that uses reverse Turing tests to discriminate between hsiarad automated processes
that are part of an attack. We extend WebSOS with a creddra&ed micropayment
scheme that combines access control and payment authamiz@ur architecture al-
lows ISPs to accurately charge web clients and serversit€laan dynamically decide
whether to use WebSOS, based on the prevailing network tonsli

WebSO$23], an enriched implementation of tecure Overlay Services (SOS)
a DoS-protection architecture [22] for web services. WeS®@hances the resilience
of Web services against congestion-based DDoS attackagaas a distributed fire-
wall and filtering attack traffic before it reaches the targdte network immediately
surrounding attack targets is protected by high- perfoaanuters that aggressively
filter and block all incoming connections from hosts thatraveapproved. Only a small
number of secretly selected secure access points withirs@elare allowed to contact
the target directly. The rest of the nodes use the overlayar&tas a routing mechanism
to forward the requests to these secret nodes (the ideftitiioh varies in time). Web-
SOS uses Graphic Turing Tests [33] as a means to differeraianymous users from
automated zombies. Upon connection to the access pointisgrevas prompted with
a GTT test. By preventing large-scale automated attacksetiests allowed enough
time for the overlay system to heal in case of an attack. @oyto WebSOS, we use
Graphic Turing Tests (GTTs) after to prevent malicious ¢adieh as a worm, from us-
ing a user’s micropayment wallet. This change in order catdme because our service
is not anonymous: we have a means of authenticating the restgrtials.

We extend WebSOS to include a lightweight offline electrggagment scheme.
Although practically any micropayment system can be usezlitmodel, we chose a
payment system that can inter-operate with WebSOS’ diggibarchitecture and pro-
vide the necessary user credentials. OTPchecks [16] erassapall these properties: it
is a simple distributed scheme, intended for general Isteoased micropayments that
produces bank-issued users’ credentials which can in &ed to acquire small-valued
payment tokens. It has very low transaction overhead andbeanned to use different
risk strategies for different environments making it a &bl payment solution for a
wide range of on-line services.

The remainder of this paper is organized as follows: Se@igives an overview of
Secure Overlay Services (SOS) and discusses the speciffes \WebSOS architecture
giving an overview of the Graphics Turing Tests. At the endhi$ section we pro-
vide details on OTPchecks, our micropayment scheme, amiskistrategies. Section
3 presents a detailed description of the extended WebSQénsy$he related work is
presented in section 4. Section 5 concludes the paper.



2 Background

Since our approach is based on the Secure Overlay Servi®) (82] architecture,
we will start by giving a brief overview of its important asps.

2.1 Overview of SOS

Fundamentally, the goal of the SOS infrastructure is tartisiish between authorized
and unauthorized traffic. The former is allowed to reach #sidation, while the latter
is dropped or is rate-limited. Thus, at a very basic levelS3$€quires the functionality
of a firewall “deep” enough in the network that the access tmkhe target is not
congested. This imaginary firewall performs access cobfralsing protocols such as
IPsec [21]. This generally pre-supposes the presence lo¢atitation credential&(g.,
X.509 [6] certificates) that a user can use to gain acces®towvérlay.

User - 5. e U
Access point Accass point Router Filtered Area
g Overfay Nodes

User

Fig. 1. Basic SOS architecture. Access Points represent antey point to the SOS overlay.
SOS nodes can serve any of the roles of secure access poingdmn or Secret Servlet.

Since traditional firewalls themselves are susceptibled8 Bttacks, what is really
needed is a distributed firewall [2, 17]. To avoid the effafta DoS attack against the
firewall connectivity, instances of the firewall are distribd across the network. Ex-
pensive processing, such as cryptographic protocol hagndb farmed out to a large
number of nodes. However, firewalls depend on topologigidtiations in the network
to enforce access-control policies. In what we have desdrgép far, an attacker can
launch a DoS attack with spoofed traffic purporting to or&gefrom one of these fire-
walls, whose identity cannot be assumed to remain foreweesd he insight of SOS is
that, given a sufficiently large group of such firewalls, oaa select a very small num-
ber of these as the designated authorized forwarding statanly traffic forwarded



from these will be allowed through the filtering router. In SQhese nodes are called
secret servletsAll other firewalls must forward traffic for the protectedesto these
servlets. Figure 1 gives a high-level overview of a SOS Bbtftacture that protects a
target node or site so that it only receives legitimate trassions. Note that the secret
servlets can change over time, and that multiple sites cathgssame SOS infrastruc-
ture.

To route traffic inside the overlay, SOS uses Chord [30], Witan be viewed as
a routing service that can be implemented atop the exisBngeltwork fabricj.e., as
a network overlay. Consistent hashing [19] is used to maprhitrary identifier to a
unique destination node that is an active member of the ayerl

SOS uses the IP address of the target,fveb server) as the identifier to which the
hash function is applied. Thus, Chord can direct traffic fieomg node in the overlay to
the node that the identifier is mapped to, by applying the hasttion to the target's IP
address. This node, where Chord delivers the packet, ifadatget, nor is it necessar-
ily the secret servlet. It is simply a unique node that willdventually be reached, after
up tom = log N overlay hops, regardless of the entry point. This node iedahe
beaconsince it is to this node that packets destined for the tangefirst guided. Chord
therefore provides a robust and reliable, while relativelpredictable for an adversary,
means of routing packets from an overlay access point to beeveral beacons.

Finally, the secret servlet uses Chord to periodicallyimf¢the beacon of the secret
servlet’s identity. Should the servlet for a target chartge,beacon will find out as
soon as the new servlet sends an advertisement. If the olwbbdar a target drops
out of the overlay, Chord will route the advertisements t@denclosest to the hash of
the target’s identifier. Such a node will know that it is theviigeacon because Chord
will not be able to further forward the advertisement. Byiding only the beacon
with the identity of the secret servlet, traffic can be delkddfrom any firewall to the
target by traveling across the overlay to the beacon, ttan the beacon to the secret
servlet, and finally from the secret servlet, through theriilty router, to the target. This
allows the overlay to scale for arbitrarily large numberewdrlay nodes and target sites.
Unfortunately, this also increases the communicatioriagesince traffic to the target
must be redirected several times across the Inteifiétie overlay only serves a small
number of target sites, regular routing protocols may bcseifit.

2.2 Graphic Turing Tests

Graphic Turing Tests(GTTs) are tests designed to providaysokdifferentiating a hu-
man from a machine by presenting the user with a set of imagkasking a questions
about the content of the images. CAPTCHA (Completely Autmu&ublic Turing test
to Tell Computers and Humans Apart) is a program that geeeeatd grade GTTs [33].
The particular CAPTCHA realization we use is PIX. It consist a large database
of labeled images. All of these images are pictures of cdaaigiects (a horse, a table, a
house, a flower, etc). The program picks an object at randads  random images of
that object from its database, distorts them at randomepteshem to the user and then
asks the question "what are these pictures of?” as showrgur&R. PIX relies on the
fact that humans can relate the objects within the distomedje and current automated
tools cannot. The human authenticates himself/herselfibsriag as the description of



the object in ASCII text. Graphic Turing Tests are an indefggm component of our
architecture and thus we can update it without changing #mr@omponent.

CAPTCHA Implementation

“What are these pictures of?

Enter

The Captcha library was obdained from CMU CAPTCHA Project

Fig. 2. Web Challenge using CAPTCHA PIX. The challenge in thé case is “baby or babies”.

Although recent advances in visual pattern recognition 24h defeat some of the
CAPTCHASs, there is no solution to date that can recognizeptioated images or rela-
tion between images like PI1X or Animal-PIX. Although for denstration purposes in
our prototype we use PIX, we can easily substitute it with @ter instance of graphic
turing test in case a solution to the problem presented lsyspecific CAPTCHA is
discovered.

2.3 WebSOS

WebSOS is the first instantiation of the SOS architecture.ddtess points participat-
ing in the overlay are implemented using Web proxies with &5provide two layers
of encryption. A source that wants to communicate with thigaicontacts a random
overlay node, the Secure Access Point. After authentigatird authorizing the request
via the CAPTCHA test, the overlay node securely proxiesralffic from the source
to the target via one of the beacons. The Secure overlay apo@stSOARP (and all
subsequent hops on the overlay) can proxy the HTTP requastappropriate beacon
in a distributed fashion using Chord, by applying the appedp hash function(s) to the
target’s IP address to identify the next hop on the overlayninimize delays in future



requests, the client is issued a short-duration X.509fweat®, bound to the SOAP and
the client’s IP address, that can be used to directly cothagbroxy-server component
of the SOAP without requiring another CAPTCHA test.

In WebSOS, routing decisions are made on a per-connectss. #ay subsequent
requests over the same connection (when using HTTP 1.1)rgnkaponses from the
web server can take the reverse path through the overlaye\Wfis makes the imple-
mentation simpler, it also introduces increased laterscthabulk of the traffic will also
traverse the overlay. To deal with this issue, an adaptatidime initial implementation
was created: rather than transporting the request andnesiplerough the full overlay
network, only routing information travels through the degr As before, the requester
makes a proxy request to the SOAP. At that point, the SOAPsseftuDP message into
the overlay, specifying the target. The message is routdtktbeacon, which responds
directly to the SOAP with information on the secret servtatthat target. The SOAP
then connects to the servlet, which proxies the request fasehan effect creating a
shortcutthrough the overlay.

The SOAP caches the servlet information for use in futureests. That informa-
tion is timed out after a period of time to allow for changegtopagate correctly.
The same basic UDP protocol is used by servlets to annouedgepttesence to (and
periodically update) the beacons for the various targets.

2.4 OTPchecks Micropayment System

The general architecture of this microbilling system issh figure 3. In 3, the Check
Guarantor plays the role #frovisioning the Network User plays the role Bayer, and
the Network Storage Provider (or another NU acting as an N&B)s the role of the
Merchant Clearingis done either by a financial institution (if real money isdiser by
a selected user of the system (when loyalty points or “plapegbare used).

In this system, Th@rovisioningagent issues KeyNote[4] credentialsiayersand
Merchants These credentials describe the conditions under whichtyarfs allowed
to perform a transaction, and the fact that a Merchant iscaizid to participate in
a particular transaction. When a Payer wants to buy songefnim a Merchant, the
Merchant first encodes the details of the proposed tramsattio anoffer which is
transmitted to the Payer.

If the Payer wishes to proceed, she must issue to the Merahamtrocheck for this
offer. The microchecks are also encoded as KeyNote credetiiat authorize payment
for a specific transaction. The Payer creates a KeyNote otiadlsigned with her public
key and sends it, along with her Payer credential, to the Mat This credential is
effectively a check signed by the Payer (the Authorizer) paghble to the Merchant
(the Licensee). The conditions under which this check iglvalatch the offer sent to
the Payer by the Merchant. Part of the offer is a nonce, whighsypayments to specific
transactions, and prevents double-depositing of micrdchby the Merchant.

To determine whether he can expect to be paid (and therefoether to accept the
payment), the Merchant passes the action description f{thileudes and values in the
offer) and the Payer’s key along with the Merchant'’s politha( identifies the Provi-
sioning key), the Payer credential (signed by Provisiopamgl the microchecks creden-
tial (signed by the Payer) to his local KeyNote compliancealter. If the compliance
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Fig. 3. Microbilling architecture diagram. We have the geneic terms for each component,
and in parentheses the corresponding players in 3. The arrogrepresent communication be-
tween the two parties: Provisioning issues credentials toders and Merchants; these com-
municate to complete transactions; Merchants send transaion information to Clearing
which verifies the transaction and posts the necessary cradicharges or arranges money
transfers. Provisioning and Clearing exchange informatio on the status of Payer and Mer-
chant accounts.

checker authorizes the transaction, the Merchant is gtedrihat Provisioning will
allow payment. The correct linkage among the Merchant'epahe Provisioning key,
the Payer key, and the transaction details follow from Keyg'écsemantics[4].

If the transaction is approved, the Merchant should givetgra to the Payer and
store a copy of the microcheck along with the payer credeatid associated offer
details for later settlement and payment. If the transadsmot approved because the
limits in the payer credentials have been exceeded themndipg on their network
connectivity, either the Payer or the Merchant can requésiresaction-specific cre-
dential that can be used to authorize the transaction. @bs#eat this approach, if im-
plemented transparently and automatically, provides airmamm between online and
offline transactions tuned to the risk and operational ciooTs.

Periodically, the Merchant will ‘deposit’ the microchecled associated transac-
tion details) it has collected to th@learing and Settlement Center (CSChe CSC
may or may not be run by the same company as the Provisioning, tnust have the
proper authorization to transmit billing and payment relsoto the Provisioning for
the customers. The CSC receives payment records from timugdvierchants; these
records consist of the Offer, and the KeyNote microcheckaiedential from the payer
sent in response to the offer. In order to verify that a mibemk is good, the CSC goes
through the same procedure as the Merchant did when acgep&microcheck. If the
KeyNote compliance checker approves, the check is accegsiag her public key as
an index, the payer’s account is debited for the amount afrtiresaction. Similarly, the
Merchant’s account is credited for the same amount.



The central advantage of this architecture is the abilitgrioode risk management
rules for micropayments in user credentials. Other eleatrsystems have focused on
preventing fraud and failure, rather than on managing itnamy cases with such sys-
tems, the prevention mechanisms can be too expensive foopaigments, making the
risk management approach particularly attractive.

3 Overview of the Pay-per-Use Anti-DoS System

To illustrate the overall system, we now give a thorough dpson of the necessary
software and hardware an ISP needs in order to deploy our-pgrayse DoS protection
mechanism.

3.1 ISP Provisioning

The ISP first creates an overlay network of WebSOS accesssyitgarvlets’). In addi-
tion, the routers at the perimeter of the site are instruit@diow traffic only from these
servlets to reach the interior of the site’s network. Theaédars are powerful enough
to do filtering using only a small number of rules on incomiragfic without adversely
impacting their performance.

For a payment scheme, we chose the OTPchecks system betsigeherent flex-
ibility to accommodate different services and its abildyriteroperate with a distributed
system like WebSOS. Refer to the roles presented in the GidRsHunctional descrip-
tion, in Figure 3; the Payer is the client connecting to theeas points, the Vendor is the
ISP providing the DoS protection service, and the web serpiovider (Target) is the
clearing entity. The web service provider controls the esafghe service provided via
the ISP’s network by having the access points delegate patytnedentials to each of
the clients. In this manner, the service payment can be eldaigher to the client or to
the web service provider. The ISP, using the same trangaictiormation, charges the
site providing the web service. The web service itself magrgh the user at the same
or even a higher rate for the DoS protection and possiblytfeerdnternet commodities
(bandwidth, timeetc) using the data presented by the access points. The ovestdhs
is presented in Figure 4.

3.2 System Operation

We now describe the steps involved in a client using the rpayment scheme in the
context of WebSOS. For more details on WebSOS system operdltie reader is re-
ferred to [23].

Initialization - System setup When a WebSOS node is informed that it will act as a
secret servlet for a site (and after verifying the authéytif the request, by verifying
the certificate received during the SSL exchange), it coewathie key: for a number of
well-known consistent hash functions, based on the taitgs setwork address. Each
of these keys will identify a number of overlay nodes that ailt as beacons for that
web server.
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Fig. 4. Pay-per-use DoS protection system operation oveeiv. The user is connected to an
access point that in turn authenticates the user credentialand issues an X.509 certificate
and a signed proxylet that allows the user to connect securgeto the web service for a limited
amount time.

Having identified the beacons, the servlets or the targétuaiitact them, notifying
them of the servlets’ association with a particular tarBetacons will store this infor-
mation and use it to answer the routing queries of the acaéstspvho want to connect
to the target. By providing only the beacon with the identityhe secret servlet, traffic
can be delivered from any firewall to the target by traveliogpas the overlay to the
beacon, then from the beacon to the secret servlet, andyfinath the secret servlet,
through the filtering router, to the target.

Since the standard EAP protocol is used, it is possible tanger all the EAP sub-
protocols. However, since neither EAP or EAPoL provide agytographic protection
themselves, the security of the system depends on the sezithe underlying network
and on the properties of the EAP sub-protocol. Thus, the skl the protections must
be matched to provide the desired level of security.

Buying OTP coins Whenever a new client host wants to access a service thabkhe |
protects from DoS attacks, the access point attempts toheiEAPoL protocol with
the client. The status of the client is kept unauthenticatetbng as the client fails to
authenticate through EAPoL. In our case, we provide unautiteted clients limited
access so that they can buy OTP coins, used for the actual [El&RPal authentication
(see below).

Using OTP coins Once the Client has acquired a set of OTP coins, it runs the sta
dard EAPoL protocol towards the local access point. Thegaaitrun is illustrated in
Figure 4.

Upon connection, the access point requests a user ideritdiarthe client. The
client answers with a string that identifies the microcheskdifor buying the OTP



coins, and the web service the coins where bought for. Thosvalthe access point
to contact the correct back-end authenticator, the welicgeprovider (Target). The
microcheck fingerprint identifies the relevant unused OTIR pie.

Once the back-end authenticator receives the identityoresy it checks the OTP
coin pile and sends an OPIE request, requesting for the maxdad OPIE password,
i.e.,an OTP coin. The Client responds with the next unused déjn; . The back-end
authenticator checks the coin, records it as used, andesepith an EAP SUCCESS
message. As the access point receives the EAP SUCCESS mdssiagthe back-
end authenticator, it changes the status of the client intbemticated, and passes the
message to the client. Shortly before the OTP coin is useithepack-end authenticator
sends a new OPIE request and a GTT to the client.

For the client to continue, it has to reply with the next OTEn¢c@and the user
must answer correctly the CAPTCHA challenge. This giveshesability to have a
strong protection against malicious code, such as a wormzeomnie process, using
a user’s micropayment wallet. The lifetime of a coin can bsilgaonfigured by the
service provider. We expect to prompt a user with a CAPTCHallehge every 30 to
45 minutes, depending on the service.

On the other hand, if the client does not want to continuesstmr any reason, he
simply does not respond to the request. Thus, if the clieas gdf-line, the access point
automatically changes the status of the client’s addrasstinauthenticated once the
coin has been used up.

The access point then issues a short-lived X.509 [6] ceatdicThis certificate is
signed by the ISP operating the overlay, and authorizes dldehto access the web
service that was paid for by the coin. The overlay securebyxips all traffic from the
source to the target via one of the beacons. The access paohi(l subsequent hops
on the overlay) can proxy the HTTP request to an appropriedéedn in a distributed
fashion using Chord, by applying the appropriate hash fan(g) to the target's IP
address to identify the next hop on the overlay.

This scheme is robust against DoS attacks because if arsgmuiesis attacked, the
confirmed source point can simply choose an alternate apo@sisto enter the overlay.
Any overlay node can provide all different required funogdities (access point, Chord
routing, beacon, secret servlet). If a node within the @yeid attacked, the node simply
exits the overlay and the Chord service self-heals, progidiew paths over the re-
formed overlay to (potentially new sets of) beacons. Funtoge, no node is more
important or sensitive than others — even beacons can hekattand are allowed to
fail. Finally, if a secret servlet's identity is discoveradd the servlet is targeted as an
attack point, or attacks arrive at the target with the solircaddress of some secret
servlet, the target can choose an alternate set of secwdtser

3.3 Experimental Evaluation - Latency Results

One of the main concerns of people using DoS systems is thacings the latency

overhead to the end users. Here we include some of the exgraahmesults of WebSOS
[23] that show that the end to end latency increases by arfacttwo, as shown in

Figure 5.
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Fig. 5. WebSOS Latency overhead for different SSL-enabledssvices when using the short-
cut routing mechanism

To complete the overhead analysis we measured the numberbb€ fkey veri-
fications an access point can perform, which indicates howymaicrochecks it can
validate in unit time. We used a 3 GHz Pentium4 processor madafunning Linux
with the OpenSSL V 0.9.7c library for the measurements. Trribution of the mi-
cropayment system to the overall system latency overheatisnal, even when we
issue 1024-bit RSA certificates for the client credentiatsshown in Table 1. These
measurements show that the impact of the user verificatimregs on the access points
is minimal.

Table 1. Signing and verification times for 1024-bit RSA keys

Sign | Verify Sig/se¢Ver/seq
0.0037 seF0.000Z se[270.0 |5055.9

4 Related Work

Considerable research has been devoted to the problemvednkedenial of service,
with most of the effort focusing on tracing the sources ofioialis attacks, filtering out
attack traffic at the edges, and filtering inside the netwisedfi.

Methods for tracking down the sources of malicious attaekg.([9, 29, 12] gen-
erally require that routers mark packets or that they “retmerthwhether particular
packets (or flows) have been seen in the recent past. Theiapriuse is in identifying
the real sources of attacks involving spoofed traffie. (traffic purporting to originate
from an IP address different from that of the real source)aAalue proposition, these



mechanisms represent the worst approach for ISPs, sineeisheo way of quantifying
their usefulness.

A variant of the packet marking approaches creates prdabatullly unique path-
marks on packets without requiring router coordinatiord-&osts or firewalls can then
easily filter out packets belonging to a path that exhibisnaalous behavior [34]. Al-
though this approach avoids many of the limitations of theepuarking schemes, it
requires that core routers “touch” packets (rather thamplkirswitch them). Again,
however, it is unclear how ISPs can charge for such a service.

Methods that filter at the edges are on the one hand attrasiiee they require no
action on the part of the ISP, but also (currently) the leastsssful in defending against
DoS attacks, since they require wide deployment (partitufar mechanisms filtering
at the sources of attacks). For example, systems that egaratwork traffic for known
attack patterns or statistical anomalies in traffic pattdeng.,[28]) can be defeated
by changing the attack pattern and masking the anomali¢stéaought by the filter.
The D-WARD system [28] monitors outgoing traffic from a givesurce network and
attempts to identify attack traffic by comparing against eledf reasonable congestion
control behavior. The amount of throttling on suspiciowsfit is proportional to its
deviation from the expected behavior, as specified by theeiddh extension of D-
WARD, COSSACK [25], allows participating agents to exchangformation about
observed traffic.

An approach that uses BGP to propagate source addresseanhag used for fil-
tering out source-spoofed packets inside the Internet[@&jeplaces undue burden on
the core and is useful only in weeding out spoofed packetsrtumately, the majority
of DDoS attacks do not use spoofed packets. [20] proposag @$ass-Based Queuing
on a web load-balancer to identify misbehaving IP addressdslace them in lower
priority queues. However, many of the DDoS attacks simplyseacongestion to the
web server’s access link. To combat that, the load-balawoeid have to be placed
closer to the network core. Such detailed filtering and dafigstate-management on
a per-source-IP address basis can have performance itiglieat such high speeds.
In [14], the authors use a combination of techniques than@xapacket contents, tran-
sient ramp-up behavior and spectral analysis to determiveghver an attack is single-
or multi-sourced, which would help focus the efforts of a bifgetical anti-DoS mech-
anism. Another interesting approach is that of [18], whichpmses an IP hop-count-
based filter to weed out spoofed packets. The rationale isntbat such packets will
not have a hop-count (TTL) field consistent with the IP adsleesheing spoofed. In
practice, most DoS attacks are launched from subverted.host

Mechanisms involving filtering inside the network itselg(,inside an ISP’s infras-
tructure), such as Pushback [15] require ISP investmennfiiastructure, man power,
and operational support). In Pushback, routers push fateartds the sources of an at-
tack, based on the ingress traffic they observe on theirwaiidgerfaces. Unfortunately,
itis unclear how an ISP can charge for such a service; onéjiliigss as a subscription
service, or measuring the number of times a client site iegdke service.

Another approach to mitigating DoS attacks against infdimnecarriers is to mas-

sively replicate the content being secured around thesenéitwork. To prevent access
to the replicated information, an attacker must attackegilication points throughout



the entire network — a task that is considerably more diffithdin attacking a small
number of, often co-located, servers. Replication is a fgmg means to preserve in-
formation that is relatively static, such as news artidémwever, there are several rea-
sons why replication is not always an ideal solution. Fotanse, the information may
require frequent updates complicating large-scale cologr@especially during DoS at-
tacks), or may be dynamic by its very natueeq(,a live web-cast). Another concern is
the security of the stored information: engineering a higielplicated solution without
leaks of information is a challenging endeavor.

An extension of the ideas of SOS [22, 23] appears in [1]. THbeetwo main facets
of the SOS architecture: filtering and overlay routing, aqel@red separately, and sev-
eral alternative mechanisms are considered. It is obsénme¢th some cases, the various
security properties offered by SOS can still be maintairgdgimechanisms that are
simpler and more predictable. However, some second-ordpepties, such as the abil-
ity to rapidly reconfigure the architecture in anticipatafror in reaction to a breach of
the filtering identity are compromised. In most other respetbe two approaches are
very similar.

The NetBouncer project [32] considers the use of clienttitagcy tests for filter-
ing attack traffic. Such tests include packet-validity 4ggtg.,source address valida-
tion), flow-behavior analysis, and application-specifi&tdeincluding Graphic Turing
Tests. However, since their solution is end-point based, stisceptible to large link-
congestion attacks.

[3] examines several different DDoS mitigation technoésgind their interactions.
Among their conclusions, they mention that requiring therak to do some worle.g.,
[10], can be an effective countermeasure, provided thelataloes not have too many
resources compared to the defender. Gligor [11] disagrébsiws conclusion, noting
that computational client puzzles cannot provide hard dsuguarantees) on client
wait time.

Although we use a particular micropayment system [5], oftllemes can also be
used, including digital cash systengsd.,[7]), scrip-based micropayments.§.,[27]),
and offline micropayment protocols.@.,[31]). MiniPay [13] is particularly attractive,
since it was developed primarily for use with a web browséth wonsiderable effort
gone into the user interface aspect. Risk management isimgited as a decision
to perform an online check with the billing server based anttital spending by the
customer that day, and some parameter set by the merchariieNgge that general
transactional payment schemegy,[8]) may prove too heavy-weight for our purposes.

5 Conclusion

We present the first pay-friendly DoS protection system finatishes ISPs with a bet-
ter value proposition for deploying anti-DoS systems: a teelyirn DoS protection into
a commodity. Our pay-per-use system is based on the WebS@S$itection archi-
tecture, extended to include OTPchecks, a light-weightfaxéble pay-per-use micro-
payment scheme. Its hardware and software deployment cdorteawithout changing
any of the current ISP infrastructure. The initial investinand maintenance cost can
regulated and scaled depending on the actual servicesf@dte



From the end user perspective, the system acts almost &@mily: no modifica-
tions are required in the browsers since we are taking adgardf browser extensibility.
Moreover, the target site offering the web service can haweie fine-grained control
of the users that it serves without altering any of its cursemvers’ protocols. Finally,
we allow a web service to charge its clients for the DoS ptaiacservice or provide
the service as an added value feature.
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