
Optimal Pricing for Serverless Computing

Kunal Mahajan∗, Daniel Figueiredo†, Vishal Misra∗ and Dan Rubenstein∗

∗Columbia University, †Universidade Federal do Rio de Janeiro
∗{mkunal,misra,danr}@cs.columbia.edu, †daniel@cos.ufrj.br

Abstract—Serverless computing is an attractive cloud services
paradigm, simultaneously promising reduced cost and greater
flexibility for customers and increased revenues and higher
resource utilization for cloud providers. In this paper, we present
an analysis of the potential cost benefits of serverless computing
for end customers and cloud providers. Using realistic cost
models, queueing theoretic performance models, and a game
theoretic formulation, we explore the tradeoffs between serverless
computing (SC) and traditional cloud computing (virtual ma-
chine, VM). In the proposed framework, customers distribute
their workload between SC and VM to minimize their cost
while maintaining a particular performance constraint, while the
cloud provider sets SC and VM prices to maximize its profit.
We explore the impact of relative prices, customer workload,
service capacity, and provider costs. Our main result is the
identification and characterization of three optimal operational
regimes for both customers and the provider that leverage either
SC or VM only, or both, in a hybrid configuration. The various
insights provided in this paper can help both cloud providers
and customers better understand the tradeoffs and implications
of a hybrid system that combines serverless and VM rental with
corresponding pricing models.

I. INTRODUCTION

Cloud computing is a disruptive technology that over the

past two decades has dramatically changed how enterprises

compute and how computation is monetized. Cloud computing

platforms offer a plethora of computing paradigms and pricing

models. The classic paradigm is the rental of virtual machines

(VMs) for prolonged periods of time: the price depends on

the VM resources (e.g., CPU, memory) and contract duration

(e.g., month, year).

(a) Single VM (b) Multiple VMs

Fig. 1: Cost analysis for VMs

This VM rental paradigm can be inefficient for both the

customer and provider since the reservation of resources is

This work was funded in part by the NSF through awards CNS-1717867
and CNS-1618911, and in part by CNPq and FAPERJ, Brazil. Any opinions,
findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF.

for a long duration. This inefficiency is explained in Figure 1:

The left plot shows the cost as a function of the arrival load

(e.g., jobs per second). Note that as the VM rental cost is

fixed (Cv), the cost does not vary with the load when a

single VM is rented (Figure 1(a)). There are two noteworthy

issues: 1) when the load is too low, the VM is underutilized.

Thus, the customer ends up paying a higher price for its

effective computation; 2) when the load is too high, the

VM is overloaded, and performance degrades to inadequate

levels (e.g., very long response times). The second problem

can be addressed by renting a second VM, as illustrated in

Figure 1(b). However, the first problem persists. Note that if

the first VM is overloaded by a small amount, renting two

VMs can still leave the VMs underutilized.

A more recent paradigm is the rental of VMs under a

contract that charges only for the times during which the VM

is on. While this paradigm permits both the customer and

provider to utilize resources with greater efficiency, there is

still an overhead incurred, namely, time required to hibernate

the VM, time to restore a hibernated VM, and user responsi-

bility for turning the VMs on and off. In this paper, we focus

on the more classic VM rental model, where the user pays a

fixed rate independent of the state of the VM.

Even more recently, the Function-as-a-Service (FaaS)

paradigm, also known as Serverless Computing (SC), has

emerged, in which users install functions in the cloud that are

executed by their remote applications. The cost of a function

call depends on its running time and resources consumed

such as memory. From the provider perspective, since SC

operates atop a container infrastructure as opposed to a more

generalized VM infrastructure, the underlying hardware can be

utilized more efficiently as it accommodates more containers

than general purpose VMs [1]. This allows providers to

increase profit by driving user loads onto SC, and to raise

the respective price for unit time processing in SC.

However, SC can only handle a certain class of workload

(different cloud providers offer different APIs and languages

to instantiate the functions) and VMs will continue to be

offered by cloud provider. The price of renting the VMs is then

decided by market competition between the cloud providers,

and so the providers cannot arbitrarily increase the price of SC

(or offer only SC) as the rational user always has the option

to switch to (the cheaper) VM rental.

In this paper, we explore the question of how a provider

can relatively price SC, in order to maximize profit when

facing rational users that minimize their costs (under some

performance constraint). We combine simple cost models



grounded in existing cost profiles offered by real cloud

providers and traditional queueing theory and game theory

to identify optimal strategies for both the user and provider.

In particular, we determine how a user should purchase cloud

services to minimize its cost and serve its workload under a

given performance constraint. Moreover, we determine how

the provider should set prices for cloud services in order to

maximize profits. More specifically, we make the following

contributions:

• We leverage simple queueing models for VMs and SC

to characterize their performance under some given load

(see Section II).

• We analyze the model and determine the optimal allo-

cation between VMs and SC as a function of model

parameters, such as prices for VMs and SC set by the

provider, service capacity of VMs and containers, and

user performance constraint (see Section II-A).

• Three possible operational regimes emerge under mini-

mum user cost: use SC only, combine SC and VM, and

use VM only.

• We propose a simple cost model for the provider to

offer VM and SC, where its revenue is identical to the

user’s cost. Under this consideration, we formulate a

game between the provider and the user, while for former

sets a price and the latter decides on VM and SC (see

Sections III and III-A).

• We identify the analytical expression for a Nash equi-

librium of the game, using a strategy where the user

minimizes its cost (under a given price) and the provider

maximizes its profit (see Section III-B).

II. CLOUD SERVICES MODEL: USER PERSPECTIVE

Consider cloud computing services where a client (user)

may utilize both serverless computing (SC) and virtual ma-

chines (VMs). We apply the traditional cost model of such

services where VMs are rented at a fixed price per unit time

(denoted by αv), irrespective of the loads placed on them and

the running times of jobs they process. In contrast, SC also

has a fixed unit time price (denoted by αs). However, the cost

of SC is proportional to sum of running times (duration) of

jobs processed by the service.

Each rented VM is modeled as a single server system with

a fixed capacity. However, due to variability in job sizes, we

assume the time required to service a job can follow any

distribution with average 1/µv . Note that µv can be interpreted

as the average job service rate and is a parameter of the VM.

SC is modeled as an infinite server queue with fixed

capacity, as the cloud provider dynamically allocates resources

to service each job within a given performance profile (e.g.,

provided enough memory and CPU to process at a given

rate). More specifically, the provider dynamically allocates

containers (a lightweight VM at OS-level) to service a job

arriving to its SC platform [1]. Although a container is given

a fixed processing capacity (and memory), the variability in

job sizes leads to an arbitrary distribution for the job service

time. We assume that the average job service time in SC is

1/µs. Again, µs can be interpreted as the average job service

rate and is a parameter of the SC platform.

Consider a client that uses cloud services to process a

continuous arrival of jobs, with an average rate denoted by

λ (e.g., λ = 10 jobs per minute), and would like to minimize

its cost subject to some performance constraint, such as mean

response time of jobs. In particular, we assume the client

can leverage multiple VMs and SC simultaneously, splitting

its load across the contracted services. We assume that the

arriving jobs are mutually independent, i.e. the execution of a

job does not depend on the execution of any other job1.

We assume client load arrives according to a Poisson

process with rate λ and is split randomly2 among the rented

resources, such that a thinned Poisson process arrives at VMs

and SC. This permits us to model each VM as an M/G/1

queue, while SC as an M/G/∞ queue.

Recalling that the client has an explicit performance con-

straint when using cloud services, we assume this constraint

is an upper bound on the average response time of jobs sent

to the cloud for processing. For the SC model, this constraint

translates directly to the average service time parameter, 1/µs.

For the VM model, we employ a utilization constraint: every

rented VM must have a utilization that is smaller than ρt, a

parameter set by the client. In this form, using the Pollaczek-

Khinchine formula [2], the response time constraint applied

to an M/G/1 queue maps to a utilization constraint given

the mean and second moment of the workload distribution.

Moreover, several other performance constraints, such as the

95th response time, can also be mapped to some maximum

utilization in this model.

Let s(λ) ≤ λ denote the rate of load the client assigns to

SC. Recall that in SC the client pays as long as the job is being

processed. Thus, the average cost of processing this load is

given by the average number of busy servers in the M/G/∞
queue, which is given by s(λ)/µs, times the unit time cost,

αs.

Let v(λ) denote the number of VMs rented by the client

when its load’s rate is λ. Due to the performance constraints,

each VM can accept a maximum load of ρtµv , and thus, the

maximum load the rented VMs can jointly accept is v(λ)ρtµv

at a cost of v(λ)αv , since the user pays per rented VM.

For a given load λ, the client chooses s(λ) (how much load

to send to SC) and v(λ) (how many VMs to rent) to minimize

cost:

c(λ) = αss(λ)/µs + αvv(λ) (1)

subject to λ − s(λ) ≤ v(λ)ρtµv , which is the performance

constraint for the rented VMs. Note that we assume that 1/µs

meets the average response time constraint for the client, since

otherwise SC would never be considered.

1This assumption can be relaxed considerably to assuming only that two
simultaneously running jobs are not dependent on one another.

2While this is a simple stateless load balancing policy, using more
sophisticated load balancing mechanisms does not qualitatively change the
nature of our results, it simply changes the threshold ρt used in our analysis



A. Analysis

We now investigate the tradeoffs and economic benefits in

renting VMs and using SC. Intuitively, SC can be leveraged

to reduce customer costs, especially for low loads or for loads

just over the performance constraint.

Lets start by noting that the cost of serverless is linear in

its load whereas the cost of VM is independent of its load.

For small enough loads, serverless will always be cheaper.

However, since this cost increases linearly with the load, it

will eventually surpass the fixed cost of renting a VM. Let

Ls = αvµs/αs denote the load at this crossover. When user

load λ < Ls, the user should only use SC.

When λ > Ls, renting a VM is cheaper and the VM

can handle loads λ > Ls until the performance constraint

is no longer met. Let Lv = ρtµv denote the load that a

single VM can accept under the capacity constraint. Thus,

for λ ∈ [Ls, Lv], renting a VM is cheaper and can satisfy the

performance constraint without invoking SC.

When λ > Lv , the user must either rent another VM or

divert part of the load to serverless. Again, since serverless

has a linear cost structure, it is cheaper to shed small overloads

to SC for a small enough excess load. When the excessive load

is sufficiently large, it will again be cheaper to rent a (second)

VM, and SC will not be used.

This process repeats itself as λ increases, and the optimal

allocation can be computed as follows. For a load λ, we need

a total of ⌊λ/Lv⌋ VMs since each VM can handle a load of

Lv within the performance constraint determined by the user.

Note the number of VMs is an integer. Since each VM can

handle a load of Lv , the total load handled by the VMs is

simply ⌊λ/Lv⌋Lv . Given this value, the excess load is given

by λ− ⌊λ/Lv⌋Lv . Finally, if this excess load is smaller than

Ls, we send it to serverless. Otherwise, we rent an additional

VM to process this excess load, as it will be cheaper.

From the above calculations, in general we have the fol-

lowing optimal result for renting VMs:

v(λ) =















0, if Lv ≤ Ls
⌊

λ
Lv

⌋

, if λ− ⌊λ/Lv⌋Lv ≤ Ls

1 +
⌊

λ
Lv

⌋

, otherwise

(2)

Moreover, we can determine the load diverted to serverless in

the optimal allocation, which is given by

s(λ) =















λ, if Lv ≤ Ls

λ−
⌊

λ
Lv

⌋

Lv, if λ− ⌊λ/Lv⌋Lv ≤ Ls

0, otherwise

(3)

Thus, equations (2) and (3) give the solution that minimizes

the cost posed in equation (1).

Last, note that if SC is much cheaper than VMs, then

renting VM may never be more cost effective. This occurs

when Lv ≤ Ls, indicating that when the load at which the

cost of serverless equals that of a single VM is larger than

what a VM can handle, then the VM is just not cost effective.

In this scenario, we have that s(λ) = λ and v(λ) = 0, as

indicated in the above equations.

B. Numerical evaluations

Figure 2 plots the optimal cost as function of the load λ for

different ratios of αs to αv . The curves increase linearly with

respect to λ when SC is used and flattens when an additional

VM is rented. Note that the cost reduction when using SC

strongly depend on the relative prices. If SC is relatively

expensive (αs = 10αv), then the cost savings are marginal.

On the contrary, if SC price is moderate, cost reduction is

significant for a larger range of loads (αs = 3αv). Last, if

prices are comparable (αs = 1.3αv), then SC always yields a

lower cost.

Another important consideration is the relationship between

VM price and capacity, as cloud providers offer a wide

range of VM capacities at different prices. Figure 3 shows

the optimal user cost for different price/capacity ratios. Note

that as VM capacity increases (and thus its price), the cost

reduction yielded by SC also increases. This occurs because

Ls increases with the price of the VM. However, since the

VM has more capacity, it also handles more load, inducing a

larger Lv .

Finally, we investigate the price regions for optimal al-

location of VMs and serverless. Note that given the model

parameters (including λ) and a given pair prices αs and

αv , either VM rental is cheaper, or serverless is cheaper (or

the same). This induces regions in αs × αv plane where

VM or serverless is more cost effective. Figure 4 illustrates

these regions for different values for λ. Note that each curve

(straight line) corresponds to the case where the costs are

equal. Below and above the line correspond to the cases where

SC and VM rental is cheaper, respectively. Last, as the load

λ increases, the region where serverless is cheaper decreases,

since a smaller time unit cost is required for serverless to be

more cost effective.

III. CLOUD SERVICES MODEL: PROVIDER PERSPECTIVE

The previous section analyzed how a user can minimize its

cost by leveraging different cloud services to process its load.

The reduction in cost attained by the user translates directly

to a reduced revenue (and thus, profit) to the cloud provider.

Therefore, it becomes essential for the cloud provider to

optimally set prices for cloud services to ensure maximum

profits.

The cloud provider can clearly influence how a rational

client leverages different clouds services, as the provider sets

the prices. For instance, if the price for SC is comparable to

VMs, a rational client will divert all its load to SC, and never

rent a VM (as shown in the previous section). On the other

hand, if SC price is much larger than VM price, for almost

all loads the client will prefer to use only VMs. Last, there

is price range for SC and VM that the client will prefer to

leverage both services. Hence, the relative pricing between

SC and VM determines the services purchased by a rational

client, and consequently the revenue of the provider.



Fig. 2: Optimal customer cost

with µs = 10, µv = 7, αv = 1.

Fig. 3: Optimal customer cost

with µs = 7, αs = 3.

Fig. 4: Unit time price regions (µs =
10, µv = 5).

Clearly, a provider incurs costs when offering cloud ser-

vices, which can depend on the kind of service. These

differences in costs are due to differences in hardware and

software, management practices, and necessary performance.

Thus, the cost of offering a VM to client is different from the

cost of offering SC. In particular, let βv and βs be the unit

time cost for the cloud provider to offer a single VM and a

single container for SC, respectively.

Note that a VM demands more resources from a physi-

cal machine than a container used in SC, which are more

lightweight, as shown in the literature [1]. Therefore, a phys-

ical server can offer more CPU cycles devoted to the user

jobs when leveraging containers. Thus, a provider can pack

in more containers on a server as compared to VMs, and this

reduces the operating costs for the provider on a per unit basis

(hardware costs, power usage etc.). Consequently, the cost of

offering a single VM is larger than that of offering a single

container for SC, βs < βv . Moreover we assume the cost

ratio to be inversely proportional to performance ratio, such

that βs/βv = µv/µs. This is quite useful because it relates

the service capacity of SC with its cost in comparison to VM.

Last, since containers can be implemented more efficiently

in a given hardware, we assume that µs > µv . Thus, the cost

to the provider as a function of λ is given by:

cp(λ) = βss(λ)/µs + βvv(λ) (4)

where v(λ) is the number of VMs rented by the client and

s(λ) is the client load sent to SC. As SC service is modeled by

a M/G/∞ queue we use its expectation to denote the number

of containers needed in SC. Thus, s(λ)/µs is the expected

number of containers required to offer SC for a load of s(λ).

The provider profit is simply the difference between its

costs and revenue for providing and selling a given service.

Note that this revenue is exactly the client cost for using the

cloud services, and is given by:

p(λ) = c(λ)−cp(λ) = v(λ)(αv−βv)+s(λ)/µs(αs−βs) (5)

where c(λ) is the cost for the client which is identical to the

revenue of the provider, as given by equation 1.

Given this formulation, how should a provider set its prices

to maximize profits under a rational client that minimizes its

costs? In what follows we tackle this problem.

A. The Provider-Client Game

Consider the problem of a provider setting prices to max-

imize profits under a client that leverages cloud services to

minimize its cost. We model this problem as a two-player

game, using a game theoretic formulation [3]. In particular,

we consider a sequential game with perfect information where

the provider moves first and determines prices for its cloud

services. The client moves second and determines the services

that will be purchased. In our formulation, the provider must

set αs and αv (prices) and the client must decide on v(λ)
and s(λ) (number of VMs and load to SC). Note that being a

game of perfect information, both players have access to all

model parameters and equations, including λ.

We assume the client will purchase cloud services to pro-

cess its load and meet its performance constraint. Under such

consideration, a provider could simply set prices arbitrarily

high to increase its profits. However, given a scenario with

multiple cloud providers (as is the case in the current market),

the client could simply purchase services from another cloud

provider, in order to minimize its cost. In order to capture this

phenomenon, we assume that the provider sets a fixed price

for VM rental, due to strong market competition. In particular,

we let αv = 1. Thus, our provider is left with choosing the

price αs for SC.

The solution to this game is a strategy for the provider and

a strategy for the client. A Nash equilibrium in this game is a

pair of strategies (one for the provider, another for the client)

such that neither player can benefit from unilaterally changing

strategies. A Nash equilibrium can be found using backward

induction in the game tree [3], as follows. For every possible

price set by the provider, the client minimizes its cost by

allocating its load to VMs and SC. Among all this scenarios,

the provider chooses the price that maximizes its profit. In the

analysis that follows, we determine this Nash equilibrium.



B. Analysis

Recall that in Section II we determined the minimum cost

for the client under a given price. However, recall that the

optimal allocation strongly depends on model parameters and

has three different regimes: SC only, SC+VM, and VM only.

In what follows, we consider each of these regimes.

Case 1 (SC only): ρtµv ≤ αvµs/αs. In this regime,

we have that p(λ) = (λ/µs)(αs − βv/µs). This profit is

maximized by setting αs as large as possible within the

constraint, since the profit grows linearly with αs. Thus, the

maximum value for αs that satisfy the constraint, denoted by

α
(1)
s , is given by:

α(1)
s = µs/ρt (6)

Therefore, α
(1)
s = µs/ρt is the price that maximizes the

profit in this regime. Note that the price is proportional to the

capacity of the SC container and inversely proportional to the

target utilization set by the user, ρt. In particular, a user that

has a more conservative performance constraint (e.g., lower

target utilization) will observe a higher price, since resources

cannot be used as efficiently. The maximum profit in this

regime is given by

p(1)(λ) = λ

(

1

ρt
−

βv

µ2
s

)

(7)

Case 2 (SC+VM): λ− ⌊λ/ρtµv⌋ρtµv ≤ αvµs/αs. In this

regime we have that

p(λ) =

⌊

λ

ρtµv

⌋

(1− βv) +

(

λ

µs

−

⌊

λ

ρtµv

⌋

ρtµv

µs

)(

αs −
βv

µs

)

(8)

Again, this profit increases linearly with αs and thus is

maximized by setting αs as large as possible within the

constraint that determines this case. Thus, the largest possible

value for αs in this case, denoted by α
(2)
s , is given by:

α(2)
s =

µs

λ− ⌊λ/ρt⌋ρt
(9)

which maximizes the profit in this case. Note that the price is

proportional to the capacity of the SC container and inversely

proportional to load offered to SC. In particular, a user that

sends more load to SC will observe a lower price, in order

for the provider to maintain its revenue. The maximum profit

in this regime is then given by

(10)

p(2)(λ) =

⌊

λ

ρtµv

⌋

(1− βv) +

(

λ

−

⌊

λ

ρtµv

⌋

ρtµv

)(

1

λ− ⌊λ/ρt⌋ρt
−

βv

µ2
s

)

Case 3 (VM only): otherwise. In this case the profit is

independent of αs as only VMs are being used. In particular,

if αs ≥ α
(2)
s then only VMs will be used by the client. The

profit is this regime is given by

p(3)(λ) =

(

1 +

⌊

λ

ρt

⌋)

(1− βv) (11)

The profit in this region is independent of αs due to no

load being sent to SC. Therefore, the value of αs can be set

arbitrarily large subject to the constraint αs ≥ α
(2)
s . While the

optimal value of αs is not relevant in this case, it is important

when we consider distribution of workloads. Hence, in this

region, we assume the optimal value of αs as follows:

α(3)
s = α(2)

s (12)

Since the provider wants the maximum profit, it can con-

sider the maximum over the three possible regimes, which is

given by:

p∗(λ) = max{p(1)(λ), p(2)(λ), p(3)(λ)} (13)

Moreover, the price that achieves this optimum profit is given

by:

α∗

s = α(o)
s , where o = arg max

i=1,2,3
{p(i)(λ)} (14)

Theorem 1. Consider the Provider-Client game where the

strategy for the provider is a choice for αs and its payoff

given by eq. 5 and the strategy for the client is the choice

of v(λ) (number of rented VMs) and s(λ) (load to SC) and

payoff given by the negation of eq. 1. The choices given by

eq. 14 (for the provider) and eqs. 2 and 3 (for the client) is

a Nash equilibrium of this game.

Proof. The proof is by construction of the equations that

determine the Nash equilibrium via backward induction on

the game tree. Note that for a given price αs chosen by the

provider, the strategy that minimizes the client cost (maxi-

mizes its payoff) is given by eqs. 2 and 3. Thus, the client

cannot reduce its cost (improve its payoff) by deviating from

this strategy. Similarly, given the client strategy of minimizing

its cost as determined by eqs. 2 and 3 and the strategy of the

provider of determining the price to maximize its profit as in

eq. 13, the provider cannot improve its payoff by deviating

from the price given in eq. 14.

Fig. 5: Provider profit as a function of SC price, αs.



1) Numerical evaluations: Figure 5 shows the provider’s

profit as a function of the SC price, αs, for two values for

load, corresponding to each plot. For both cases, as the price

increases we observe three distinct regions, which correspond

to the user configuration: SC only, SC+VM, VM only. The

first region where αs < 2.22 shows a fast linear increase in

the provider’s profit since all the workload is served by SC. In

this region, the profit rises simply because the user is paying a

higher price to use SC for the same workload. At αs = 2.22,

there is a sudden drop in the profit as the user reduces its

cost by utilizing the hybrid model SC+VM, with the majority

served on the VM and the remaining load on SC. The profit

again starts to increase as the price increases because the same

load served in SC is now being charged a higher price. For

λ = 3, the profit increases linearly for αs ∈ [2.22, 6.6], while

for λ = 15 it increases in the range αs ∈ [2.22, 3.4]. Note that

the profit slope in this range is not as steep as in the SC only

regime since the workload on SC is much smaller (only the

excess load). As the price continues to increase we observe a

second sudden drop in the profit, at αs = 6.6 and αs = 3.4,

respectively. This drop occurs because the user can reduce

its cost by using a second VM to serve the excess load, not

sending any more load to SC. After this point, increasing the

price αs has no bearing on the profit as the user has adopted a

VM only configuration. Thus, note that as αs increases from

zero onward, the user reacts accordingly to minimize its cost

and this has a direct influence on the provider’s profit.

The shape of these two curves is not particular of this

parameter configuration. Given our model formulation and the

optimal prices and profit established in equations 14 and 13,

there will always be two peaks corresponding to the transition

from all SC to a hybrid SC+VM configuration and from

the hybrid SC+VM to an all VM configuration. Moreover,

since these are peaks, the optimal profit is bound to occur

at one of these two peaks. Interestingly, the transition point

that provides a higher profit does depend on the parameter

configuration, as illustrated in Figure 5. However, as λ in-

creases the optimal profit will be attained at the first peak,

with the highest possible price within the all SC regime. As

λ decreases, the optimal price is attained in the second peak,

with the highest possible price within the SC+VM regime.

Again, this is illustrated in Figure 5.

IV. RELATED WORK

A large body of work has explored different pricing

schemes for different cloud services paradigms, consider-

ing both the perspective of the customer (how to minimize

cost) and the cloud provider (how to maximize revenue or

profit) [4]–[7]. Cloud providers also offer services under a

dynamic pricing scheme (i.e., spot instances), and some recent

works have focused on price bidding and price prediction and

dynamic VM allocation to reduce costs [8]–[10]. A common

line of work explores the combination of multiple cloud

service paradigms, such as dynamic pricing, fixed pricing, and

VMs that can be switched on and off, under different work-

loads, such as video streaming, and scientific computation, in

order to reduce customer costs [7], [11]–[13]. Another area of

research has focused on minimizing customer costs in hybrid

(private/public) cloud providers, especially where they explore

provisioning of private clouds and the offloading of excess

computations to a public cloud [14], [15]. Although these prior

works are similar in scope to the current paper, to the best of

our knowledge, none of them have explored a hybrid approach

that combines VM rentals and serverless computing (SC) to

reduce customer cost and maximize provider profit.

V. CONCLUSION

This paper has addressed a hybrid system where a cus-

tomer can split its workload between VM rental and SC in

order to minimize costs while satisfying a given performance

constraint. A key finding is the existence of three optimal

operational regimes, where depending on system parameters,

the Nash equilibrium of the game (i.e., the optimal strategy

for the customer and provider) is for the customer to use

only SC or only VM or a combination of both. Moreover,

we analytically characterize these three regimes as a function

of system parameters, such as determining the optimal price

for SC. Finally, we believe the proposed framework to study

SC pricing and the various insights provided in this paper can

help both cloud providers and customers better understand the

tradeoffs and implications of a hybrid system that combines

SC and VM rental with their corresponding pricing structure.

REFERENCES

[1] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and
virtual machines at scale: A comparative study,” in ACM International

Middleware Conference, 2016.
[2] L. Kleinrock, Theory, Volume 1, Queueing Systems, 1975.
[3] M. J. Osborne and A. Rubinstein, A course in game theory, 1994.
[4] D. Kumar, G. Baranwal, Z. Raza, and D. P. Vidyarthi, “A survey on

spot pricing in cloud computing,” Journal of Network and Systems

Management, 2017.
[5] B. Jennings and R. Stadler, “Resource management in clouds: Survey

and research challenges,” Journal of Network and Systems Management,
2015.

[6] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Resource
management in cloud networking using economic analysis and pricing
models: A survey,” IEEE Communications Surveys & Tutorials, 2017.

[7] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud,”
in USENIX International Conference on Autonomic Computing, 2014.

[8] P. Sharma, D. Irwin, and P. Shenoy, “How not to bid the cloud,” in
USENIX Workshop on Hot Topics in Cloud Computing, 2016.

[9] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “Spoton:
A batch computing service for the spot market,” in ACM Symposium

on Cloud Computing, 2015.
[10] H. Xu and B. Li, “Dynamic cloud pricing for revenue maximization,”

IEEE Transactions on Cloud Computing, 2013.
[11] D. J. Dubois and G. Casale, “Optispot: minimizing application deploy-

ment cost using spot cloud resources,” Cluster Computing, 2016.
[12] C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang, “Exploiting

spot and burstable instances for improving the cost-efficacy of in-
memory caches on the public cloud,” in EuroSys, 2017.

[13] Z. Xu, C. Stewart, N. Deng, and X. Wang, “Blending on-demand
and spot instances to lower costs for in-memory storage,” in IEEE

INFOCOM, 2016.
[14] R. Buyya, S. Pandey, and C. Vecchiola, “Cloudbus toolkit for market-

oriented cloud computing,” in IEEE CLOUD, 2009.
[15] M. Malawski, K. Figiela, and J. Nabrzyski, “Cost minimization for

computational applications on hybrid cloud infrastructures,” Future

Generation Computer Systems, 2013.


