
Fluid Models and Solutions for Large-Scale IP Networks

Yong Liu
Computer Science

Department
University of Massachusetts

Amherst, MA, 01003
yongliu@cs.umass.edu

Francesco Lo Presti
Universita’ dell’Aquila

Dipartimento di Informatica
Via Vetoio (Coppito 1)

67010 Coppito (AQ), Italy
lopresti@di.univaq.it

Vishal Misra
Computer Science

Department
Columbia University
New York, NY 10027

misra@cs.columbia.edu
Don Towsley

Computer Science
Department

University of Massachusetts
Amherst, MA, 01003

towsley@cs.umass.edu

Yu Gu
Computer Science

Department
University of Massachusetts

Amherst, MA, 01003
yugu@cs.umass.edu

ABSTRACT
In this paper we present a scalable model of a network of Active
Queue Management (AQM) routers serving a large population of
TCP flows. We present efficient solution techniques that allow one
to obtain the transient behavior of the average queue lengths, packet
loss probabilities, and average end-to-end latencies. We model dif-
ferent versions of TCP as well as different versions of RED, the
most popular AQM scheme currently in use. Comparisons between
our models and ns simulation show our models to be quite accurate
while at the same time requiring substantially less time to solve, es-
pecially when workloads and bandwidths are high.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous
; C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance

Keywords
Fluid model, Simulation, Large-scale IP networks

1. INTRODUCTION
Networks, and the Internet in particular, have seen an exponen-

tial growth over the past several years. The growth is likely to con-
tinue for the foreseeable future, and understanding the behavior of
this large system is of critical importance. A problem, however, is
that the capabilities of simulators fell behind the size of the Internet
a few years ago. The gap has since widened, and is growing almost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’03, June 10–14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.

at the same rate as the network is growing. Attempts to close this
gap have led to interesting research in the simulation community
[5, 2, 3], but we are still someway off in simulating a reasonable
sized network.
In this paper, we take recourse to scalable modelling as a tool

to speed up ”simulations”. Our idea is to abstract out behavior of
IP networks into analytical models. Solving the models numeri-
cally then yields performance metrics that are close to that of the
original networks, thereby enabling an understanding of the key
aspects of the performance of the networks. Our starting point is
the model in [16] that describes the behavior of TCP networks by
a set of (coupled) ordinary differential equations. The differential
equations represent the expected or mean behavior of the system.
Interestingly, recent results [7, 18] indicate that with appropriate
scaling the differential equations in fact represent the sample path
behavior, rather than the expected behavior. Hence, our solutions
gain in accuracy as the size of the network is increased, a somewhat
surprising result. We solve the differential equations numerically,
using the Runge-Kutta method, and our simulations show speedups
of orders of magnitude compared to packet level discrete event sim-
ulators such as ns [4]. Additionally, the time-stepped nature of our
solution mode lends itself to a particularly simple parallelization.
We also perform a number of optimizations in identifying links that
are not bottlenecks to speedup the simulations.
The contribution of this paper goes beyond a numerical imple-

mentation of the ideas in [16]. We address a number of critical
deficiencies of the model in [16]. Most importantly, we incorporate
topological information in the set of differential equations. The
original model in [16] defined a traffic matrix, which described
the set of routers through which a particular set of flows traversed.
However, the order in which the flows traversed the routers was
absent in the traffic matrix, and that information is potentially of
critical importance. In Section 2.2 we exemplify this with a patho-
logical case wherein the model of [16] yields misleading results
which our refined model corrects. We also model the behavior of
a number of variants of TCP such as SACK, Reno and New-Reno
in our model. Going beyond the RED [11] AQM mechanism mod-
elled in [16], we also incorporate other modern AQM mechanisms
such as AVQ [15] and PI control [13].
In terms of related work, two works are particularly relevant. In

[8], the authors develop fixed point solutions to networks similar

to ones that we are analyzing, to obtain mean performance met-
rics. However, that approach suffers from two deficiencies. First,
we are often interested in transient behavior of the network, that
might reveal potential instabilities. Secondly, it is not clear from
the solution technique outlined in [8], that the solution complex-
ity scales with the size of the network. Another related approach
is that of [17]. In that approach, the authors exploit the model in
[16] and the ideas of [7, 18] to demonstrate the fact that the be-
havior of the network is invariant if the flow population and the
link capacities are scaled together. Their approach to simulating
large populations of flows in high capacity links is to scale down
the system to a smaller number of flows in smaller capacity links,
thereby making the simulation tractable for discrete event simula-
tors. The idea is appealing (and in fact applies to our approach
too), however the scaling the technique manages is in the popula-
tion and capacity of the links. Our methodology enables exploring
a wider dynamic range of parameters. The time stepped solution
technique also lends itself to fairly straightforward parallelization,
and we can solve for larger networks (links and routers) than with
discrete event simulators. Preliminary results indicate that our com-
putational complexity grows linearly with the size of the network,
whereas the growth of the complexity for discrete event simulators
is super-linear, providing another win for the fluid based approach.
We start with deriving the topology aware fluid model of IP net-

work. Numerical solution algorithm of the fluid model is presented
in Section 3. Model refinements are described in Section 4 to ac-
count for different versions of TCP and RED implementations. We
present some experiment results in Section 5 to demonstrate the
accuracy and computation efficiency of our fluid model. Section 6
introduce some extensions to the model. Section 7 concludes the
paper and points our directions for future works.

2. FLUID MODELS OF IP NETWORKS
In this section we present a fluid model for a network of routers

serving a population of TCP flows. We will focus on persistent
TCP connections working in congestion avoidance stage. Short-
lived TCP flows and time-outs are modelled in Section 6.

2.1 Network Model
We model the network as a directed graph G = (V, E) where V

is a set of routers and E is a set of links. Each link l ∈ E is served
at a rate ofCl bps. In addition, associated with each link is an AQM
policy, characterized by a probability discarding/marking function
pl(t), which may depend on link state such as queue length. Ex-
amples, including RED, will be given in Section 2.4. The queue
length of l is ql(t), t ≥ 0. Traffic departing from the queue associ-
ated with l arrives at the next queue after al seconds.
The network G serves a population of N classes of TCP flows.

We denote by ni the number of flows in class i, i = 1, . . . , N . The
TCP flows within the same class have the same characteristics, fol-
low the same route and experience the same round trip propagation
delays. Let Fi = (ki,1, . . . , ki,m′

i
) andRi = (ji,n′+1, . . . , ji,mi)

be the ordered set of queues (i.e., links) traversed by the data (for-
ward path) and acks (reverse path) of class i flows, respectively.
We distinguish between forward and reverse path as ack traffic
(loss) is typically negligible compared to data traffic (loss). Let
Ei = Fi ∪ Ri. For k ∈ Ei, we let si(k) and bi(k) denote the
queues that follow and precede k, respectively.

2.2 The MGT00 Model
In [16], a dynamic model of TCP behavior was developed us-

ing a fluid-flow and stochastic differential equation analysis. This
model relates the expected values of key TCP flows and network

variables and is described by the following coupled sets of nonlin-
ear differential equations.

1. Windows Size. All flows in the same class will have the same
average behavior. Let Wi(t) denote the expected window
size of a class i flow at time t. Wi(t) satisfies

dWi(t)
dt

=
dt

Ri(t)
− Wi(t)

2
λi(t),

where Ri(t) is the round trip time and λi(t) is the loss in-
dication rate experienced by a class i flow. We defer the ex-
pressions for these latter quantities to the next Section.
LetAi(t) denote the (expected) sending rate of a class i flow.
This is related to TCPwindow size byAi(t) = Wi(t)/Ri(t).

2. Queue Length For each queue l, denote Nl the set of TCP
classes traversing queue l. Then:

dql(t)
dt

= −1(ql(t) > 0)Cl +
i∈Nl

niAi(t), (1)

where 1(expr) stands for the indicator function which as-
sumes value 1 if expr is true, and 0 otherwise.

The first differential equation describes the TCP window control
dynamic. Roughly speaking, the 1/Ri term models the window’s
additive increase , while theWi/2 term models the window’s mul-
tiplicative decrease in response to packet losses, which is assumed
to be described by a Poisson process with rate λi(t).
The second equation models the queue length behavior as simply

the accumulated difference between packet arrival rate at the queue,
which in [16] is approximated by term i∈Nl

niAi(t), and the
link capacityCl. Observe that the approximation arises in replacing
the aggregate arrival rate at the queue at time t with the aggregate
sending rate of the TCP flows traversing that queue at t. These
two quantities can significantly differ for two reasons: (1) flows
are shaped as they traverse bottleneck queues; and (2) the arrival
rate at time t at a queue is a function of the sending rate at a time
t − d, where d is the sum of the propagation and queueing delays
from the sender up to the queue. This delay varies from queue
to queue and from flow class to flow class. One extreme example
is that there is only one TCP class which traverses two identical
RED queues with bandwidth C in tandem. The TCP traffic will
be shaped at the first queue such that its peak arrival at the second
is less than or equal to C, which equals to the service rate at the
second queue. Clearly, there won’t be any congestion in the second
queue. However, from (1), we will get identical equations for those
two queues. Therefore the model predicts the same queue length
and packet marking probability for them as shown in Figure 1

2.3 A Topology Aware Model
We have observed in the previous subsection the importance of

accounting for the order in which a TCP flow traverses the links
on its path. In this section we present a model that takes into ac-
count how flows are shaped and delayed as they traverse the net-
work. This is achieved by explicitly characterizing for each class
the arrival and departure rate at each queue. For each queue l ∈ Fi

traversed by class i flows, let Al
i(t) and Dl

i(t) be the arrival rate
and departure rate of a class i flow, respectively. The following sets
of expressions relate the departure and arrival process at a queue
along the forward path.

• Departure RateWhen queue length is zero, the departure rate
at time t equals the arrival rate. When the queue is not empty,

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

100

150

200

250

300

350

400

450

Time

Qu
eu

e L
en

gth

ns
MGT
FFM

(a) The First Queue

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

100

150

200

250

300

350

400

450

Time

Qu
eu

e L
en

gth

ns
MGT
FFM

(b) The Second Queue

Figure 1: Importance of Topology Order

the service capacity is divided among the competing flows in
proportion to their arrival rates. Thus, for each flow of class
i and l ∈ Fi, we have

Dl
i(t) =

Al
i(t), ql(t) = 0

Al
i(t−d)

j∈Nl
Al

j(t−d)
Cl, ql(t) > 0

(2)

where d is the queueing delay experienced by the traffic de-
parting from l at time t. d can be obtained as the solution of
the following equation

ql(t − d)
Cl

= d. (3)

• Arrival Rate For each flow of class i, its arrival rate at the
first queue on its route is just its sending rate. On any other
queue, its arrival rate is its departure rate from its upstream
queue after a time lag of link propagation delay. It is sum-
marized in the following equation:

Al
i(t) =

Ai(t), l = ki,1

Dbi(l)
i (t − abi(l)), otherwise

(4)

The system evolution is governed by a set of differential equa-
tions:

1. Window Size.

The window sizeWi(t) of a flow of class i satisfies

dWi(t)
dt

=
1(Wi(t) < Mi)

Ri(t)
− Wi(t)

2
λi(t) (5)

whereMi is the maximal TCP window size,Ri(t) and λi(t)
denotes the round trip time and the loss indication rate at time
t (in other words, as seen by the sender at time t). Ri(t) is
such that t − Ri(t) is the time at which the data, whose ack
has been received at time t, departed the sender. Ri(t) takes
the form

Ri(t) =
l∈Fi∪Ri

al +
ql(tl)
Cl

(6)

where tl is the time at which the data or ack arrived at queue
l. {tl, l ∈ Ei} are related to t by the following set of equa-
tions:

tsi(l) = al + tl +
ql(tl)
Cl

(7)

where tki,1 = t.
To compute λi(t) we need to consider the fate of the unit of
traffic that departs at time t − Ri(t) at each node along the
forward path (assuming ack loss is negligible). Thus,

λi(t) =
l∈Fi

Al
i(tl)pl(tl) (8)

2. Queue Length
For each queue l, denoteNl the set of TCP classes traversing
it. Then:

dql(t)

dt
= −1(ql(t) > 0)Cl +

i∈Nl

niA
l
i(t) (9)

We repeat the tandem queue experiment in Section 2.2. Revised
topology order aware model gives accurate queue length results at
both queues as shown in Figure 1

2.4 AQM Policies
The classical example of an AQM policy is RED [11]. The dif-

ferential equation governing pl(t) is described by the following:
RED computes the marking probability based upon an average

queue length x(t). The relationship is defined by the following:

p(x) =

0, 0 ≤ x < tmin

x−tmin

tmax−tmin pmax, tmin ≤ x ≤ tmax

1, tmax < x

(10)

where tmin, tmax, and pmax are configurable parameters. In the
gentle variant of RED, the following modification is done:

p(x) =

0, 0 ≤ x < tmin

x−tmin

tmax−tmin pmax, tmin ≤ x ≤ tmax

x−tmax

tmax (1 − pmax) + pmax, tmax < x ≤ 2tmax

(11)

In [16], the differential describing x(t) was derived to be

dx
dt

=
loge(1 − α)

δ
x(t) − loge(1 − α)

δ
q(t) (12)

where δ and α are the sampling interval and the weight used in
the EWMA computation of the average queue length x(t). Thus,
the differential equation describing pl(t) is obtained by appropri-
ately scaling (12) with (10) or (11) according to the scheme used.
Another AQM scheme PI [13] has the following differential equa-

tion describing pl(t):
The PI controller tries to regulate the error signal e(t) between

the queue length q(t) some desired queue length qref (e(t) =
q(t)− qref). In steady state the PI controller drives the error signal
to 0. The relationship between pl(t) and q(t) is described by

dpl

dt
= K1

dq(t)
dt

+ K2(q(t) − qref) (13)

where K1 and K2 are design parameters of the PI algorithm.
Note that the REM algorithm uses a similar differential equation
to compute the price at a link, which is subsequently used by a
static function to compute the marking probability. Thus, the same
scheme as PI works with a little modification for REM. We have a
similar description for AVQ but due to space constraints we have
not included it in this paper.

2.5 Model Reduction
In most operating networks, congestion only occurs in several

spots, such as access points and peering points of ISPs. Most net-
work links, especially in backbone networks, operate at low uti-
lization level. Queues at those links will be always empty and
no packet will be dropped there. Therefore there is no need to
model queueing and RED behavior and maintain TCP states on
those links. The network model can be reduced so that we only
solve queueing and RED equations for potentially congested links
and those uncongested links are transparent to all TCP classes ex-
cept for introducing propagation delays. It will greatly reduce the
computation time of the fluid model solver.
Given a network topology and traffic matrix, we can identify un-

congested links as follows:

• Step 1 Define queue adjacent matrixADJ such thatADJ(i, j) =
1 if there exists a TCP class which traverses queue j imme-
diately after it traverses queue i; ADJ(i, j) = 0 otherwise.
For queue i, define set O(i) as the set of TCP classes which
have queue i as their first hop.

• Step 2 Queue i is marked as uncongested if

l∈E

ADJ(l, i) ∗ Cl +
k∈O(i)

Mknk

pdk
< Ci, (14)

where Mk is the maximal TCP window size, nk is the flow
population and pdk is two way propagation delay of TCP
class k.

• Step 3 Remove all uncongested queues from the topology
and adjust TCP route accordingly. If all queues on a TCP
class’s route have been removed, remove this TCP class and
calculate its sending rate asMknk/pdk.

• Step 4 If no queue is removed in Step 3, end the model
reduction; otherwise, go back to Step 1.

The first term on left hand side of (14) is the queue i’s maximal
traffic inflow rate from all its upstream queues. The second term
accounts for the fact that a TCP flow’s arrival rate at the very first

queue on its route is bounded by the ratio of its maximal congestion
window to its two way propagation delay.

3. TIME-STEPPEDMODELSOLUTIONAL-
GORITHM

The solution of the fluid model can be obtained by solving the
group of delayed differential equations defined in (2)-(13) at a low
computational cost. We have implemented our fluid model solu-
tion in both Matlab and C. Matlab has its own Ordinary Differen-
tial Equation (ODE) solver suite. As a script language, Matlab is far
from being optimized in terms of computation cost and doesn’t pro-
vide much programming flexibility. Alternatively, we programmed
fixed step-size Runge-Kutta algorithm [9] in C to solve the fluid
model.
The Runge-Kutta algorithm is a widely used method to solve

differential equations numerically. Briefly, for a system described
by

dy(t)
dt

= f(t, y(t)),

where y(t) = {y1(t), y2(t), · · · , ym(t)}, its solution can be ob-
tained by the numerical integration

y((n + 1)h) = y(nh) +
h
6

[kn,1 + 2kn,2 + 2kn,3 + kn,4],

where h is the solution step-size and

kn,1 = f(tn, y(nh))

kn,2 = f(tn + h/2, y(nh) + kn,1h/2)

kn,3 = f(tn + h/2, y(nh) + kn,2h/2)

kn,4 = f(tn + h, y(nh) + kn,3h)

By implementing the Runge-Kutta algorithm, the fluid model
solver essentially becomes a time-stepped network simulator. Fig-
ure 2 depicts the flowchart of fluid model solver. After reading in
network topology and TCP traffic matrix from a configuration file,
the fluid model solver conducts model reduction using the algo-
rithm in Section 2.5. Then the fluid model is solved step by step for
the whole duration of simulated time. At each time step, the send-
ing rate of each TCP class is updated according to (5); queue length
and packet loss probability at each congested queue are calculated
from (9) and corresponding AQM equations, e.g. (10,11 and 12)
for RED; TCP state variables {Ri(t),λi(t), A

l
i(t), D

l
i(t)} are up-

dated according to equations (2,4,6,8). The solution of the fluid
model, including the sending rate of each TCP class and each con-
gested queue’s packet loss probability and queue length, is dumped
into data files at the end of the process.
To solve equations (2,4,6,8) directly, for each t, we would need

to track back in time for each class the instant at which data (ack)
arrived at each queue. Instead, we find it convenient to proceed by
rewriting those equations forward in time, i.e., by expressing the
future value of the round trip time, loss rate indication, arrival and
departure rate as function of their current values. We proceed as
follows:

• Round Trip Time

Let di
l(t), l ∈ Ei, i = 1, . . . , N , be the total delay accrued

by the unit of data (ack) which at time t has arrived to node
l. From the definition,

Ri(t) = di
si

(t) (15)

Initialiazation

End of
Simulation?

Update Windows
of All TCP Classes

Update Queue
Length & Loss

Probability at all
Congested Link

Update Each TCP
State Variables at All
Queues on its Route

Dumping Data

YES

NO

Start

END

Figure 2: Flowchart of Fluid Model Solver

We compute these delays forward in time as follows:

di
l(tf) = di

bi(l)(t) +
qbi(l)(t)

Cbi(l)
+ abi(l), (16)

where tf = t +
qbi(l)

(t)

Cbi(l)
+ abi(l) is the data arrival time at

link l given that those data arrive at its previous link bi(l) at
time t.

• Loss Rate Indication

Let ri
l(t), l ∈ Ei, i = 1, . . . , N , be the amount out of the

data arriving at link l at time t which was lost. From the
definition, we have

λi(t) = ri
si

(t) (17)

ri
l (tf) = ri

bi(l)(t) + Abi(l)
i (t)pbi(l)(t) l ∈ Fi (18)

ri
l (tf) = ri

bi(l)(t) l ∈ Ri (19)

• Departure Rate

The expressions for the departure rate are directly obtained
from (2). For each class i and l ∈ Fi

Dl
i t +

ql(t)
Cl

=
Al

i(t) ql(t) = 0
Al

i(t)

j∈Nl
Al

j(t)
Cl ql(t) > 0

(20)

• Arrival Rate

For each flow i and l ∈ Fi,

Al
i(t + abi(l)) = Dbi(l)

i (t) (21)

The accuracy of the solution of a differential equation system is
determined by the stiffness of the system and the solution step-size.
The smaller the step-size the more accurate the solution. On the
other hand, the computation cost of our time-stepped fluid model
solver is proportional to its step-size. For our fluid model solver,
the tradeoff between step-size and solution accuracy is not strin-
gent. The stiffness of the fluid network model is bounded by the
smallest round trip time of TCP classes and the highest bandwidth
of congested queues. We can achieve accurate enough results with
a small enough step-size. Meanwhile our fluid model solver still
runs fast even with a small step-size. As we will see in Section 5,
a step-size of 1ms is small enough for our fluid model solver to
get accurate solution and at the same time enables the solution of a
large IP network to be obtained reasonably fast.

4. REFINEMENTS OF FLUID MODEL
Model in Section 2 captures the basic dynamic behavior of TCP

and RED. Implementation details change their behavior to certain
extent. In this section, we present some model refinements which
account for a variety of detailed behavior of both TCP and RED.

4.1 Variants of TCP
Equation (5) models the behavior of TCP Reno. Starting from

the Reno version, TCP implements Fast Recoverymechanism. TCP
halves its congestion window whenever the number of duplicated
ACKs crosses a threshold. When there are multiple packet losses in
a window, TCP Reno reduces its window several times. This makes
Fast Recovery inefficient. New Fast Recovery mechanisms are im-
plemented in Newreno and SACK to ensure at most one window
reduction for packet losses within one window. In [10], simulation
results show Newreno and SACK recover much faster than Reno
from multiple packet losses.
Tomodel the Fast Recoverymechanisms of Newreno and SACK,

we replace perceived packet loss rate λi(t) in Equation (5) by Ef-
fective Loss Rate

λ′
i(t) =

1 − (1 − λi(t)
Ai(t−Ri(t))

)Ri(t)Ai(t−Ri(t))

Ri(t)

λi(t)/Ai(t−Ri(t)) approximates the end-to-end packet loss prob-
ability. Consequently, the numerator is the probability of at least
one packet is lost within a window of Ri(t)Ai(t−Ri(t)) packets.
Therefore λ′

i(t) models the actual window back off rate for TCP
Newreno and SACK under loss indication rate λi(t). When the
packet loss probability λi(t)/Ai(t − Ri(t)) is small, we will have
λ′

i(t) ≈ λi(t).

4.2 Compensation for Variance of TCP Win-
dows

From equation (5), in stationary state, we will haveW = 2/p.
Other studies [6, 14] predict W = 1.5/p. We think the differ-
ence comes from the assumption on loss event process. Our model
is a mean-value model: we model only the first order statistics of
TCP window sizes and queue lengths. In a real network, those sec-
ond order statistics, e.g. variance of TCP window size, impact on
network stationary behavior. For example, we use average window
size to approximate TCP’s window size before back off. This is
accurate if loss arrival is independent of TCP window. When the
correlation between a TCP class’s window size and perceived loss
arrival is not negligible, some compensation is necessary. One ex-
treme example is a single bottle-neck supporting a single TCP class
ofM flows. LetW i denote the window size of ith flow within this
class. The average window size of the class is W̄ = 1

M
M
i=1 W i.

Given a small packet loss probability p, the probability that at least
one packet in a window will be dropped is approximately W ip.
Then the average back off for the whole class is

1
M

M

i=1

(W i)2p/2,

which will be bigger than W̄ 2p/2. To demonstrate, we conduct an
ns simulation of a single bottle-neck serving single-class of TCP
flows and measure each TCP flow’s window size immediately be-
fore back off. From Figure 3 TCP window sizes before back-offs
is generally bigger than the average window size . To compensate,

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Time

Average
Mean Window Size

Figure 3: TCP Window Sizes prior to Back-offs

we use W̄/1.5 instead of W̄/2 to model average back off of a TCP
flow. Figure 4 contains results for ns and fluid model with Multi-
plicative Decrease factorMD = 1.5 andMD = 2.

4.3 RED Implementation Adjustments
In this section, we model different versions of RED implemen-

tation.

• Geometric and Uniform After calculating the packet mark-
ing probability p based on average queue length, RED marks
packet independently with p. Let X be the time interval be-
tween two marks. ThenX assumes a geometric distribution

P (X = k) = (1 − p)k−1p

In [11], authors point out that a geometric inter-marking time
will cause global synchronization among connections. They
then propose a marking mechanism to make X uniformly
distributed in [1, 1/p]. Each arriving packet is marked with
probability p/(1 − count × p), where count is the number
of unmarked packets that have arrived since the last marked
packet. A packet will always be marked if count × p ≥ 1.
By doing this, the actual packet marking probability is ap-
proximately 2p. To account for uniform dropping, packet
marking probability of RED is calculated in fluid model as

pl(t) = 2 ∗ p(xl(t)),

where p(·) is the piece wise linear RED marking profile as
defined in (11).

• Wait Option In the ns implementation, a RED option wait
is introduced to avoid marking two packets in a row. When
wait option is on, which is default for a recent ns version, an
arriving packet is marked with probability p/(2 − count ×
p) if 1 ≤ count × p ≤ 2. A packet will be marked with

S2

S3

B1 B2

D1

D2

D3

S1

Class 2

Class 3

Class 1

Figure 6: Single bottle-neck network with dynamic workload

probability 1 if count × p ≥ 2. Inter-marking interval X is
uniformly distributed in [1/p, 2/p]. It effectively reduces the
packet marking probability 2p/3.

To account for those implementation details, we change the cal-
culation of the RED marking probability in the fluid model as

pl(t) =
2
3p(xl(t)) wait = 1

2p(xl(t)) wait = 0

We did a simulation on a single bottle-neck network with a single
TCP class of 60 flows. The RED queue at the bottle-neck uses ECN
marking. Figure 5 shows the results for the RED queue with and
without wait option.
Notice that the packet marking probability predicted by our fluid

model is a little higher than the actual packet marking rate in ns.
This is because we don’t model Timeout and will need a higher
packet marking rate to bring down the TCP sending rates.

5. EXPERIMENTAL RESULTS
We have performed extensive experiments to evaluate the accu-

racy and computation efficiency of our fluid models. Given the
limited space, we are only able to present several representative
experiments here. More results are available for interested readers.
For all experiments in this section, we use TCP Newreno and

RED with ECN marking as AQM policy. Stepsize of fluid model
solver is fixed at 1ms. We start with a single bottle-neck topology
with a variable TCP workload. The fluid model’s accuracy is tested
by comparing its solution with simulation results obtained in ns
when the network operates in both stable and unstable regions. In
Section 5.2, the fluid model’s scalability is demonstrated on a two
bottleneck topology. The results show that the fluid model is scal-
able in the link bandwidth and flow populations. In addition, its
accuracy improves as the link bandwidth scales up. In the last ex-
periment, we test the capacity of our fluid model based simulation
on a large topology with more than 1, 000 nodes and thousands of
TCP classes consisting up to 176, 000 TCP flows. Computation re-
sults show that the fluid model approach is promising in simulating
large IP networks.

5.1 Accuracy of Fluid Model
The first experiment is to demonstrate the accuracy of our fluid

model. As shown in Figure 6, there are 3 TCP classes sharing a
bottle-neck link with bandwidth of 10Mbps. Each TCP class con-
sists of 20 homogeneous TCP flows. There are totally 14 queues.
After model reduction, fluid model only need to simulate 4 queues
which potentially have congestion. TCP class 1 and 2 start at time
0. After 40 seconds, class 2 stop sending data. The number of TCP
flows on the bottle-neck link reduced from 40 to 20. The system
enters unstable region. At 70 second, both class 2 and class 3 be-
come active. TCP workload increases by a factor of 3. The system

20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

22

Time

Av
er

ag
e

W
in

do
w

Si
ze

MD=2
MD=3/2
NS

(a) Window Size

20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

Time

Pa
ck

et
 M

ar
ki

ng
 P

ro
b.

MD=2
MD=3/2
NS

(b) Loss Probability

Figure 4: Compensation for Window Variance

5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

Time

Av
er

ag
e

Q
ue

ue
 L

en
gt

h

NS
FFM w/o Adj.
FFM w. Adj

(a) wait is on

5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Time

Av
er

ag
e

Q
ue

ue
 L

en
gt

h

NS
FFM w/o Adj.
FFM w. Adj

(b) wait is off

Figure 5: Account for RED Implementations

20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Time

W
ind

ow
 S

ize
 (G

rou
p1

)
NS Sample
NS Average
FFM

(a) TCP Window Size

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

Time

Qu
eu

e L
en

gth

NS
FFM

(b) Bottle-neck Queue

Figure 7: Results for Single Bottleneck Topology

1 2

3

4 6

7

8

9

5

Class2

Class3 Class1

Figure 8: Network with Two Bottlenecks

eventually settles around its stable operation point. We compare
the fluid model solution with results obtained from ns. Figure 7(a)
plots one TCP connection’s window sample path and the average
window size we obtained from both ns and fluid model. The fluid
model captures the average window behavior very well both when
the system is stable and unstable. Figure 7(b) plots instantaneous
queue length from ns and the average queue length predicted by
the fluid model. We also see a good match, which also implies the
fluid model calculates RED packet marking probability accurately.

5.2 Model Scalability with Link Bandwidth
The second set of experiments is to show fluid model’s scalabil-

ity with link bandwidth and flow populations. We set up 3 TCP
classes on a network of 8 links as in Figure 8. Link bandwidth and
flow population within each class are set to be proportional to a
scale parameter K, which ranges from 1 to 100. The link between
node 2 node 4 and the link between node 6 and 8 have bandwidth
of K ∗ 10Mbps. Other links have bandwidth of K ∗ 100Mbps.
Each TCP class consists of K ∗ 40 TCP flows. In order for simu-
lation results at different scales to be comparable, we change RED
thresholds tmin and tmax proportional to K and its queue aver-
aging weight α inversely proportional to K. There are totally 16
queues in the network. Our model reduction algorithm identifies
12 of them as uncongested queues which don’t need to be simu-
lated. For each K, we run a simulation of 100 seconds using both
ns and fluid model solver. Figure 9 and Figure 10 show simula-
tion results for K = 1 and K = 10 respectively. ns simulation
results eventually converge to fluid model solution when K gets
bigger. Because the fluid model is scalable with both link band-
width and flow population, the computation cost to obtain model

K 1 10 50 100
ns 12.5 122 983 1,676
FFM 0.766 0.766 0.766 0.766

Speedup 16.32 159.3 1,283 2,188

Table 1: Computation Cost of ns and Fluid Model

solution is invariant to the scale parameter K. On the other hand,
packet events in ns grows as link bandwidth and number of flows
scale up. It takes much longer for ns simulation to finish when
K = 100 than K = 1. Table 1 lists pure computation costs in unit
of second of ns and the fluid model, both without dumping data.
The larger the scale, the bigger computation savings for the fluid
model.

5.3 Experience with Large IP Networks
In this experiment, we test the capacity of our fluid model based

simulation approach on a large IP network with structured topol-
ogy. The simulated topology is adapted from a baseline network
model [1] posed as a challenge to large network simulators by the
DARPA Network Modelling and Simulation program.
At a high level, the topology can be visualized as a ring of N

nodes. Each node in the ring represents a campus network and is
connected to its two neighbors by links with bandwidth of 9.6Gbps
and random delay uniformly distributed in the range of 10-20ms.
In addition, each node is connected to a randomly chosen node
other than its neighbors through a chord link. Figure 11(a) is a ring
structure generated for N = 20.
The campus networks at all nodes share the same topology shown

in Figure 11. Each campus network consists of 4 sub-networks:
Net 0, 1, 2, 3. All the links in campus networks have bandwidth of
2.5Gbps.
Node 0.0 in Net 0 acts as the border router and connects to border

routers of other campus networks. The links within Net 0 have
random delays uniformly distributed in the range of 5 − 10ms.
Links connecting 0.x to other sub-networks have random delays
uniformly distributed in the range of 1 − 5ms. All links in Net 1,
Net 2 and Net 3 have random delays of 1-2ms. Net 1 contains two
routers and four application servers. Net 2 and Net 3 each contains
four routers connecting to client hosts.
The traffic contains persistent TCP flows. From each router in

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Time

Se
nd

ing
 R

ate

NS Class1
FFM Class1
NS Class3
FFM Class3

(a) TCP Sending Rate

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Time

Qu
eu

e L
en

gth

NS Bottleneck1
FFM Bottleneck1
NS Bottleneck2
FFM Bottleneck2

(b) Bottle-neck Queues

Figure 9: Simulation Results whenK = 1

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Time

Se
nd

ing
 R

ate

NS Class1
FFM Class1
NS Class3
FFM Class3

(a) TCP Sending Rate

10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

Time

Qu
eu

e L
en

gth

NS Bottleneck1
FFM Bottleneck1
NS Bottleneck2
FFM Bottleneck2

(b) Bottle-neck Queues

Figure 10: Simulation Results whenK = 10

(a) Ring Structure

0.0 0.1

1.0

1.1

1.3

1.2

1.4

1.5

4 5

3.1 3.0 2.0 2.1

3.2 3.3 2.2 2.3

0.2

Net 0
Net 1

Net 2
Net 3

(b) Topology of Subnetworks

Figure 11: Topology of a Large IP Network

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60

Ti
m

e
(s

)

N

Figure 12: Computation Cost as a function of N

Net 2 and Net 3, there are 8 TCP classes. Four of them are des-
tined at servers in its neighboring campus network. The other four
classes are destined at servers in the campus network which con-
nects to it through a chord link. Each TCP class containsK homo-
geneous TCP flows.
In total, the entire network has 19N nodes, 44N queues, and

64N TCP classes. Our experiment is carried on a Dell Preci-
sion Workstation 530, which is configured with two Pentium IV
processors(2.2GHz) and 2GB memory. However, our program is
not parallelized. Therefore only one processor is utilized. We fix
the flow population of each TCP class at 50 and vary the number
of campus networks on the ring from 5 to 55. Each topology is
simulated for 100 seconds. Our model reduction algorithm identi-
fies 59.1% queues as uncongested. Figure 12 illustrates simulation
times that grow almost linearly with the number of campus net-
works. The simulation for the largest topology, which consists of
1, 045 nodes and 176, 000 TCP flows, finished after 74 minutes
and 7.2 seconds.

6. EXTENSIONS AND FUTURE WORKS
We have seen in previous sections that our fluid model based

approach is promising in simulating large IP networks. Numeri-
cal solution gives us plenty of flexibility to extend the fluid model
without worrying about the complexity of solving them analyti-
cally. In this section, we present some model extensions which we
have done but haven’t conducted extensive validations for.

6.1 Model Time-out and Slow Start
The model described in Section 2 captures the additive increase

multiplicative decrease dynamic of the TCP window control. As
shown in [16], the model can be easily extended to account for
timeout losses and the slow start behavior of TCP, by replacing (5)
with

dWi(t)

dt
= (1 − αi,CA)

Wi(t)

Ri(t)
+ αi,CA

1
Ri(t)

− Wi(t)

2
λi(t)(1 − pi,TO) − (Wi(t) − 1)λi(t)pi,TO (22)

TheWi/Ri termmodels the exponential growth of the window size
in the slow start phase of TCP, while the Wi − 1 term models the
window’s reduction to 1 in response to timeout losses. αi,CA is the
probability that a flow of class i is in congestion avoidance (CA).
For long lived flows, we can ignore the slow start phase and set
αi,CA = 1. For short lived flow, on the other hand, they are always
in slow start, and we can set αi,CA = 0. pi,TO is the probability
that a loss is a timeout loss. This probability can be approximated
by pi,TO = min{1, 3/Wi} ([14]).

6.2 Incorporate Unresponsive Traffic
Although the majority of Internet traffic is controlled by TCP, a

non-negligible amount of traffic is unresponsive to congestion. It
can be generated by either UDP connections or simply TCP con-
nections which are too short to experience congestion. A recent
work [12] studies unresponsive traffic’s impacts on AQM perfor-
mance based on the MGT model. We can incorporate unresponsive

traffic into our model by changing (9) to

dql(t)
dt

= −1(ql(t) > 0)Cl +
i∈Nl

niAi(t) + ul(t), (23)

where ul(t) is aggregate unresponsive traffic rate at queue l. In-
stead of generating individual unresponsive flows, we can use dif-
ferent unresponsive traffic rate models derived in [12] for ul(t) to
speed up our simulation.

7. CONCLUSIONS AND FUTUREWORKS
In this paper, we have developed a methodology to obtain per-

formance metrics of large, high bandwidth IP networks. We started
with the basic fluid model developed in [16], and made consid-
erable improvements and enhancements to it. Most importantly,
we made the model developed in that paper topology aware. That
contribution alone is of independent interest in terms of theoretical
(fluid) studies of such networks, as topology awareness can play a
critical part in conclusions regarding stability and performance as
we demonstrated by a simple tandem queue example. We also in-
corporated a number of TCP features and variants, as also a number
of different AQM schemes into the model. Our solution methodol-
ogy is computationally extremely efficient, and the scalable model
enables us to obtain performance metrics of high bandwidth net-
works that are well beyond the capabilities of current discrete event
simulators. Our technique also scales well with the size of the net-
work, displaying a linear growth in computational complexity, as
opposed to a super-linear one observed with discrete event simu-
lators. The time stepped nature of our solution lends itself to a
straightforward parallel implementation, pointing to another possi-
ble avenue of ”simulating” large networks.
As a future work, we will further extend the fluid model and at

the same time validate model extensions, including those described
in the previous section. Model reduction algorithm described in
Section 2.5 still has some space to improve. Another exciting fu-
ture work direction is to integrate our fluid model based simulator
with other existing packet level simulators to conduct hybrid sim-
ulation. In such a hybrid simulation, our fluid simulator can be
used to simulate back ground traffic in the core network and pro-
vide network delay and loss information to packet traffic running
across the fluid core. Preliminary attempts to integrate our fluid
simulator with ns have proven successful. Now we are working on
integrating our fluid simulator with parallel packet level simulators
in a distributed fashion to further boost its simulation speed.

8. REFERENCES
[1] DARPA NMS Baseline Network Topology.

http://www.cs.dartmouth.edu/∼nicol/NMS/baseline/.
[2] Parallel and Distributed NS.

http://www.cc.gatech.edu/computing/compass/pdns/.

[3] Scalable Simulation Framework (SSFNet).
http://www.ssfnet.org.

[4] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[5] Virtual InterNetwork Testbed.

http://www.isi.edu/nsnam/vint/.
[6] E. Altman, K. Avrachenkov, and C. Barakat. A stochastic

model of TCP/IP with stationary random losses. In
Proceedings of ACM/SIGCOMM ’00, September 2000.

[7] F. Baccelli, D. McDonald, and J. Reynier. A Mean-field
Model for Multiple TCP Connections through a Buffer. In
Proceedings of IFIP WG 7.3 Performance, 2002.

[8] T. Bu and D. Towsley. Fixed Point Approximation for TCP
behavior in an AQM Network. In Proceedings of
ACM/Sigmetrics, 2001.

[9] J. W. Daniel and R. E. Moore, editors. Computation and
theory in ordinary differential equations. San Francisco, W.
H. Freeman, 1970.

[10] K. Fall and S. Floyd. Simulation-based comparisons of
Tahoe, Reno, and SACK TCP. Computer Communications
Review, 26, July 1996.

[11] S. Floyd and V. Jacobson. Random Early Detection gateways
for congestion avoidance. IEEE/ACM Transactions on
Networking, 1(4):397–413, August 1993.

[12] C. Hollot, Y. Liu, V. Misra, and D. Towsley. Unresponsive
flows and AQM performance. In Proceedings of
IEEE/INFOCOM, 2003.

[13] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On
Designing Improved Controllers for AQM Routers
Supporting TCP Flows. In Proceedings of IEEE/INFOCOM,
April 2001.

[14] J.Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling tcp
throughput: A simple model and its empirical. In
Proceedings of ACM/SIGCOMM ’1998, 1998.

[15] S. Kunniyur and R. Srikant. Analysis and design of an
adaptive virtual queue algorithm for active queue
management. In Proceedings of ACM/SIGCOMM ’2001,
2001.

[16] V. Misra, W.-B. Gong, and D. Towsley. Fluid-based Analysis
of a Network of AQM Routers Supporting TCP Flows with
an Application to RED. In Proceedings of ACM/SIGCOMM,
2000.

[17] K. Psounis, R. Pan, B. Prabhakar, and D. Wischik. The
scaling hypothesis: simplifying the prediction of network
performance using scaled-down simulations. ACM Computer
Communications Review, January 2003.

[18] P. Tinnakornsrisuphap and A. Makowski. Limit Behavior of
ECN/RED Gateways Under a Large Number of TCP Flows .
In Proceedings of IEEE Infocom, 2003.

