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ABSTRACT
Serverless computing is an emerging Cloud paradigm that allows
users to claim and pay for resources only when their jobs are ex-
ecuting. While this paradigm offers several advantages, the phe-
nomenon of "cold start" reduces its inherent efficiency with respect
to the utilization of compute, storage and network resources that
support its existing virtualization deployment systems. We analyze
current modes of deployment and identify data similarities across
applications. Based on these observations, we propose a new de-
ployment system that is built atop a peer-to-peer network, virtual
file-system and content-addressable storage, which will increase
compute availability, reduce storage requirement, and prevent net-
work bottlenecks.

CCS CONCEPTS
• Information systems → Distributed storage; • Computer
systems organization → Cloud computing; Peer-to-peer ar-
chitectures; •Networks→ Network experimentation; • Software
and its engineering→ File systems management;
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1 INTRODUCTION
CISCO[8] has forecasted that 94 percent of workloads and compute
instances will be processed by cloud data centers and the annual
global data center IP traffic will reach 20.6 ZB by the end of 2021
[21]. This begs the question: Is the current cloud system capable of
efficiently utilizing compute, storage and network resources for the
increased workload?
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Serverless computing has emerged as a win-win technology
benefiting both cloud providers (CP) by providing fine-grained
control and the users by allowing quick application deployments,
version control, and attractive pricing [1, 5, 7, 10, 22–27, 29, 30, 33,
34]. In serverless, the CPmaintains generic worker nodes to execute
the functions uploaded by the users from a centralized storage bucket
(e.g., S3[2]) that holds code to be executed when corresponding
jobs arrive. For function execution, the CP builds a container with
the source code, downloads the container on a worker node from
centralized storage bucket and executes it. This process induces a
latency while downloading and initializing the container, referred
to as a "cold start", whose magnitude is dependent on a set of
application-specific factors [18, 29, 32]. The cold start problem is
exacerbated with scaling as each new function execution incurs the
cold start latency. To reduce the impact of cold start for subsequent
executions, multiple instances of the worker node are retained for
tens of minutes [32], thereby reducing compute availability.

The cold start problem arises due to the existing container de-
ployment design, which retrieves each new instance of a container
from the storage bucket. Our proposed system design addresses
the problem and consists of 4 modules: peer-to-peer network (p2p),
virtual file system with content-addressable storage (CAS), par-
tial delivery execution and TCP splitting. The user uploads the
source code to a CAS bucket that has hash based references to
file blocks using a MerkleDAG [28]. Each worker node runs a p2p
client and a CAS-based virtual file system. To execute the container-
ized source code, the worker node requests file blocks from the
virtual file system, which serves the blocks if already present at
the node; otherwise, it fetches the requested file blocks from the
p2p network from other nodes and/or the CAS bucket. This enables
partial delivery execution[31] (starting execution before all blocks
are delivered) of the container, with the added benefit of live mi-
gration [9] of the container from one worker node to another. Live
migration requires availability of the application’s IP address on
the destination machine, which we ensure via TCP splitting at the
master node as shown in figure 1. Our system can be incorporated
in existing container orchestration platforms such as Kubernetes
[17].

Figure 1: TCP splitting
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2 KEY IDEAS
The key ideas are based on analysis of the characteristics of the
different ways the applications are deployed, and motivating the
need for hash-based reference to file blocks.

2.1 Characteristics of deploying an application
Scaling [11], versioning [6], and live migration [9] represent the
three ways in which an application is deployed on the worker nodes.
In scaling, multiple identical application instances are replicated
across nodes to meet either the current demand or predicted de-
mand. In versioning, the application is updated, requiring different
versions to be supported on the cloud. The updated application will
likely have significant overlaps of data with previous versions. In
live migration, an application is moved from one worker node to
another, which requires saving current state (checkpoint) of the
container, transferring and executing the checkpoint on a different
worker without disrupting the user experience. For all the three
modes, our proposed system can reduce the latency by exploiting
the presence of identical blocks. Figure 2 shows the percentage
of identical 256KB blocks of 15 checkpoints of an open source
e-commerce web application, PrestaShop [13], taken after every
minute. As shown in figure, the first checkpoint had 53% blocks iden-
tical to the original container checkpoint. Even in later checkpoints
there still remained a 24% overlap with the original configuration
of the application.

Figure 2: Blocks similarity

2.2 Block similarity in source code across
applications

Applications tend to commonly use popular libraries for a variety of
tasks, such as image processing, data analytics, machine learning,
etc. Based on scraping 876K Python projects from GitHub, [29]
identified 20 most common PyPI[14] packages used as GitHub
project dependencies and measured the initialization time for these
packages with 12.8 seconds as the highest time for pandas[12]. This
time can be reduced by our proposed system as the blocks for the
popular libraries may already exist on the worker node and/or
can be fetched from multiple worker nodes by leveraging the p2p
network.

3 IMPLEMENTATION AND EVALUATION
Our system utilizes modified IPFS [19], a p2p, content addressed
file system. The IPNS [19] mount-point provides the virtual FUSE-
based custom file system enabling container executions and live

migrations. The evaluation below shows twofold benefits: minimiz-
ing average completion time of container checkpoint transfers and
reduction in the cold start latency.

3.1 Multiple Shuffles
Our testbed consists of 8 t2.micro[16] nodes on AWS[4], four in
Oregon region and the remaining in North Virginia region. Each
node has 2 container images (roughly 200MB each). In shuffle, each
node acquires 2 container images chosen at random from nodes in
the other region. We perform multiple shuffles capturing scenarios
in big data distributed processing frameworks such as Apache Spark
[3]. Figure 3 shows an improvement of 33.3% and 59.3% in average
transfer completion time over rsync[15] transfers for the first shuffle
and sixth shuffle respectively.

Figure 3: Multiple shuffles

3.2 Live Migration
We developed a simple web application which simply kept a count
of number of HTTP requests and created a checkpoint whose size
was 7MB. We performed live migration of the container using our
system and found a 37.9% reduction in boot time over rsync on the
same testbed as in sec 3.1 with 2 nodes containing copies of the
checkpoint.

4 RELATEDWORK
[29] proposed a specialized container system, eliminating kernel
bottlenecks, that is optimized for serverless workloads. Other so-
lutions to cold start problem include increasing the memory allo-
cation, choosing a faster runtime, keeping shared data in memory,
shrinking source code package size, monitoring performance and
logging relevant indicators, using time-series forecasting, and keep-
ing a pool of pre-warmed functions [20]. However these solutions
not only put an additional burden on the developers by increas-
ing monetary costs, reducing implementation flexibility, requiring
significant optimization, thereby hindering quick deployment and
fast growth, but also inefficiently utilize the compute and storage
resources of the cloud provider.
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