IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

Distributed Self-Stabilizing Placement of Replicated
Resources in Emerging Networks

Bong-Jun Ko, Student Member, IEEE, and Dan Rubenstein, Member, IEEE

Abstract—Emerging large scale distributed networking systems,
such as P2P file sharing systems, sensor networks, and ad hoc wire-
less networks, require replication of content, functionality, or con-
figuration to enact or optimize communication tasks. The place-
ment of these replicated resources can significantly impact perfor-
mance. We present a novel self-stabilizing, fully distributed, asyn-
chronous, scalable protocol that can be used to place replicated
resources such that each node is “close” to some copy of any ob-
ject. We describe our protocol in the context of a graph with col-
ored nodes, where a node’s color indicates the replica/task that it
is assigned. Our combination of theoretical results and simulation
prove stabilization of the protocol, and evaluate its performance in
the context of convergence time, message transmissions, and color
distance. Our results show that the protocol generates colorings
that are close to the optimal under a set of metrics, making such a
protocol ideal for emerging networking systems.

Index Terms—Replica placement, convergence, graph coloring.

1. INTRODUCTION

MERGING large scale distributed networking systems,
such as P2P file sharing systems, wireless ad hoc and
sensor networks, and utility computing systems utilize replica-
tion of resources, information, and jobs at participating network
nodes to increase the overall performance of the networked
system. For example, P2P file sharing applications [6] replicate
content at nodes throughout the network, reducing the expected
retrieval time. In utility computing applications such as Grid
Computing [5], a computing task replicated among multiple
computing nodes not only further extends the distribution of the
computation load, but also reduces the time spent transporting
tasks to nodes. In multichannel wireless networks [2], [9], the
capacity of the network is often increased by assigning channels
to nodes such that the distance between nodes assigned to the
same channel is maximized. In all these systems, the decision
of where to replicate particular items, whether the items take
the form of information, tasks, or resources, has a tremendous
impact on the performance of the entire system.
While the use of replication in the different environments de-
scribed above addresses a vastly different set of performance

Manuscript received February 17, 2004; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor E. Zegura.

The authors are with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: kobj@ee.columbia.edu;
danr@ee.columbia.edu).

This work was supported in part by the National Science Foundation under
Grant no. ANI-0411047, ITR ANI-0325495, and CAREER Award no. ANI-
0133829, and by gifts from Lucent Technologies, Cisco Systems, and Intel In-
formation Technology Research Council. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

Digital Object Identifier 10.1109/TNET.2005.850196

issues, we make the observation that at an abstract level, the
placement objectives are remarkably similar. In particular, it is
important either to place different items in the vicinity of each
node or to place the identical items as far away from each other
as possible. We note that a placement that achieves one of these
objectives also does it well for the other in many cases, i.e., if the
distance between two identical resources is increased, it leaves
room for different resources to be placed at nearby points, and
vice versa.

There are several properties of emerging networks that com-
plicate the design of a protocol to place or configure replicated
resources.

e The number of participating nodes will often be in the
thousands or millions.

» Participation will be dynamic, with nodes joining and
leaving the network at unpredictable times, making it dif-
ficult to elect “leader” nodes that make decisions for large
portions of the topology.

* Clocks will not be perfectly coordinated, making it diffi-
cult or impossible to perform synchronized actions among
large collections of nodes. Unless carefully constructed,
in such an environment, a protocol can enter a livelocked
or deadlocked state.

» Transmissions across large distances will incur high band-
width costs or will increase the time needed to decide
where to place the replicas.

For these reasons, these networks cannot utilize protocols
that implement centralized (leader-oriented) computation, re-
quire synchronized messaging, or require communications be-
tween distant nodes.

This paper describes a distributed, hierarchy-free, self-stabi-
lizing protocol that performs placement of replicated resources.
We address the fundamental problem of placing multiple copies
of resources within the network, in which each node must hold
some resource, such that an arbitrarily chosen resource is reach-
able over a short path from any starting point in the network, and
that there are large distances between identical copies. We de-
velop a protocol that exhibits several desirable properties:

» self-configuring: no third party is used to coordinate

placement.

» fully distributed: all nodes are assigned an identical set of
tasks to aid in the decision of the placement.

* scalable: information exchange is performed within local-
ized areas.

* asynchronous: no clocks are required to sequence or co-
ordinate the operations at nodes.

We explore this problem in the context of an arbitrary graph,

where each node is colored with one of &k colors, where each

1063-6692/$20.00 © 2005 IEEE

color represents a resource class. The protocol operates by
having each node continually change its color in a greedy
manner to maximize its own distance to a node of the same
color. To this, we add a novel mechanism that avoids race con-
ditions to ensure that the protocol stabilizes in asynchronous
communication environments indicative of these emerging
networks.

We use both theoretical analysis and simulation to evaluate
the performance of our protocol. Our theoretical analysis proves
that the protocol always converges to a fixed coloring. This anal-
ysis also formally bounds the distance that must be traveled from
a node to an arbitrarily chosen color within a factor of three of
what can be achieved in an optimal coloring. The results of dis-
crete-event simulation demonstrate that for randomly generated
graphs, our protocol is scalable in that the convergence time and
the number of protocol messages grow slowly with the number
of nodes in the network, and that the coloring is on average much
closer to the optimal allocation than the theoretical upper bound.

The rest of this paper is organized as follows. In Section II,
we present the network model and formally state the coloring
problem. Section III describes the distributed protocol, and Sec-
tion IV discusses the issues involved in its extension and some
potential applications. The convergence to a fixed coloring and
theoretical bounds on performance are presented in Section V.
Section VI presents performance evaluation results of the pro-
tocol observed through simulation. Section VII briefly reviews
related work, and we conclude the paper in Section VIII.

II. MODEL AND PROBLEM FORMULATION

In this section, we introduce the network model and the opti-
mization goals in the context of that model. Throughout the de-
scription of the model and the protocol, we assume the protocol
messages exchanged between a pair of nodes are reliably de-
livered in the order in which they were transmitted, using some
existing reliable transfer mechanism relevant to the particular
network system (for example, hop-by-hop TCP connections).

We view a distributed networking system as an undirected,
connected graph, G = (N, E), where N = {1,2,...,n =
|N|} is the set of (numbered) nodes of the graph and F is the
set of edges. Each edge e € F is assigned an arbitrary, nonnega-
tive weight. The distance between two nodes x and y, d(z, y), is
the sum of the weights of edges along a shortest path between x
and y. Each node n € N is assigned one of k colors, ¢y, . . ., cg,
where a node’s color can change with time. Each color repre-
sents a specific set of resources being replicated. We assume that
the value of k is determined in advance and remains fixed for the
duration of the execution of the protocol. The color of node x
at time ¢ is denoted Cy(z).

Node z’s distance to color c; at time ¢, d;(z, ¢;) is defined
as the distance at time ¢ between x and the closest node to =
of color ¢; i.e., di(x, ¢;) = mini<j<n{d(z,j) : Ci(j) = ¢i}.
Note that d;(z, C¢(x)) = 0, and also that if no node is assigned
to a particular color ¢;, then d;(z, ¢;) = oo. We define 6;(x) to
be the distance at time ¢ between x and the closest other node
of the same color, i.e., 6;(z) = mini<j<,{di(z,j) : Ci(j) =

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

In the context of this model, there are several different objec-
tive functions whose minimization or maximization would yield
desirable placements of replicated resources depending on the
design principle. For example, one could argue that the objec-
tive function is to:

* minimize max, max; d;(x, ¢;);

e minimize) Y. d:(z,c;); or

* maximize), 6:(z).

The first two objective functions are used to place colors so
that each node has a short distance through the graph (i.e., net-
work) to reach any other color. Such placement is useful when
it is desirable to have replicated contents or tasks (represented
by colors) near to any arbitrarily chosen point in the network.
With the last objective, we would like to place colors so that
each node is far from nodes of the same color. Such placement is
useful when nearby placement of identically-configured nodes
causes a conflict, such as assigning two nodes to transmit upon
the same wireless channels. Note that these two types of ob-
jectives fit naturally together: placing the same color far away
makes room for other colors nearby.

Unfortunately, the above optimization problems are NP-hard
as they can be reduced from 3-SAT problem [1]. Hence, we
focus on developing a distributed protocol that computes ap-
proximations to these problems.

III. ASYNCHRONOUS DISTRIBUTED COLORING PROTOCOL

In this section, we describe our Asynchronous Distributed
Coloring (ADC) protocol and the procedure that each node
performs. Our focus in this section is the development of
a decentralized protocol with which each node learns of its
nearby nodes’ colors and how it selects and changes its own
color without causing race conditions.

Since up-to-date color information about a node y takes time
to reach node z, it will be important to distinguish between the
perception that node x has about the current coloring and the ac-
tual coloring of the graph. We use d(z, ¢;), and 6;(z) to denote
the distances to the closest node of color ¢; and C(z) respec-
tively as perceived by node z at time ¢ based on the most recent
coloring information it has received. The real distances (i.e., as
perceived by an oracle that knows every node’s actual color at
time ¢) remain denoted by d;(z, ¢;) and 6;(x).

We say that a node z is locally stable at time ¢ if dy (z,¢;) <
5t(x) forall 1 < < k, i.e., x perceives that no color is further
from it than the closest node whose color matches its own. Oth-
erwise, the node is locally unstable. If d;(z, ¢;) < 6;(x) for all
1 < 4 < k, then at time, is said to be stable, and is otherwise
unstable. A graph coloring is said to be stable when all nodes
in the graph are stable.

A. Coloring Rule

We begin by describing the process used to adjust the color
of a node. Each node is responsible for selecting its own color.
We assume for now that, with the color change propagation pro-
tocol described in the next subsection, each node continually re-
ceives updated information of the colors of nearby nodes. More
specifically, at any time ¢, a node x keeps Jt(x, ¢;) for all colors

KO AND RUBENSTEIN: DISTRIBUTED SELF-STABILIZING PLACEMENT OF REPLICATED RESOURCES IN EMERGING NETWORKS 3

, x':
x’: G s
@ o :
[€)

<<<<< ,’(Z 7;@

Fig. 1. a changes color from ¢; to c». (a) Before: time ¢. (b) After: time ¢'.

ci,1 <i<kand St(x), and applies the following simple color
changing rule.

The Color Change Rule: At any time ¢, a locally stable node
keeps its color fixed. However, any locally unstable node = will
try to changeA its color to a color ¢; that is furthest from z, i.e.,
di(x,¢;) > di(z,cj) forall1 < j < k.

In other words, a node seeks to change its color to ¢; if it
perceives that the closest node of color ¢; is further from it
than the closest other node of its current color. Changing color
in this manner is desirable in that it increases St(x) decreases
> dy(z, ¢;) (i.e., average distance to a color), and does not in-
crease but often decreases max; czt(yv7 ¢i) (i.e., distance to the
furthest color).

Fig. 1 provides an illustrative example of a node z that starts
as color c; at time ¢ and completes its change to color ¢y at
time ¢’ > t. Nodes x and z’ are initially colored ¢; and nodes z
and 2z’ are initially colored cs. In this example we use Euclidean
distance to indicate the distance between nodes. In Fig. 1(a), x’
is the closest node to x of color ¢, and z is the closest node to x
of color ¢y. Since 6,(z) < di(x, c2), x can increase its distance
to a node of the same color by changing its color from c; to
co. The result is depicted in Fig. 1(b). We see that the shaded
region around z (i.e., the minimum distance to the same color)
has grown. Note that the color change by z is not necessarily
favorable for other nodes in the graph. For instance, the change
by z to color ¢, substantially shrinks the distance from node z to
anode of its same color, co. Because of this, it is not immediately
obvious that repeated application of our coloring rule will lead
to a stable coloring. This stability is proven in Section V.

An important characteristic of this coloring rule is that a node
only needs the knowledge of the distance to the closest node
of each color, i.e., the required information exchange is often
available within a local region.

We now describe the messages exchanged by neighboring
nodes to implement the ADC protocol. The messages ex-
changed between neighbors perform two essential functions.
First, nearby nodes exchange information that describes the
color configuration of nodes within a local area. Second, nodes
seek approval from nearby neighbors before changing their
colors to guard against simultaneous attempts to change colors
which, if performed by nodes simultaneously, could livelock or
deadlock the protocol before it reaches a stable configuration.

B. Color Propagation

A node needs to be continually updated about any changes
in coloring at other nodes that affect its minimum distance

ITf there are more than one such furthest colors, 2 chooses any one of them
arbitrarily.

to a color, since its own ‘“desired” color is based on these
values. We have devised a distributed method we call Colored
Bellman—Ford or CBF for short, which exchanges the necessary
information among nodes. Our description here assumes that
the reader is familiar with the Bellman—Ford algorithm [4].

As in the Bellman—Ford algorithm, each node in CBF learns
the distances to other nodes by exchanging a distance update
message with each of its neighbor nodes. The difference is,
while Bellman—Ford updates each node with the distances to
all other nodes in the network, CBF updates information only
about the distances to the closest nodes of all other colors, lo-
calizing the scope of the propagation of update messages.

In a preliminary design of CBF, there is a row per color and a
column per neighbor, with entry (4, j) storing a pair consisting
of the shortest known distance to color ¢; along a path whose
first hop passes through node 7, and the identity of this closest
node of color ¢;. The distance is set to oo when no node of color
¢; is known (or exists), and the identity is left as null. As in
Bellman—Ford, a node chooses its shortest (known) distance to
color ¢; by selecting the column in row ¢ that minimizes this
distance. When a node running CBF receives an update from
a neighboring node, as in Bellman—Ford, it updates its table in
the respective column and forward update messages to all of
its neighbors containing shortest distance information (length
and node ID) for any colors to which its shortest distance has
changed.

The one limitation of the above method is that a node x will
often not learn about the closest other node of the same color,
C'(x), when its neighbors all point to z as their closest node of
that color. This problem is resolved by having each node store
information pertaining to the two closest nodes of each color that
can be reached through each neighbor. The information about
these two closest nodes is also forwarded to neighbors when an
update changes either member of this closest pair, and hence a
node’s table entry for the same color must contain at least one
node other than itself.

Clearly, CBF will continue to send updates as long as nodes
continue to change their colors, since color changes affect the
distances stored in the distance tables. We have proven the fol-
lowing result which will be used later to prove that our dis-
tributed protocol stabilizes to a coloring.

Claim 1: When nodes cease to change their colors, i.e.,
3t,Vz,Vr > t,C-(z) = Cy(z), CBF will terminate transmit-
ting messages, and each node = will have accurate information
about the distance to and the identity of the two closest nodes
of each color ¢; # C(z), and of the closest node other than
itself of color C(z).

Proof: The proof is for a graph where edges have posi-
tive weights. We will prove the result for only the closest node
of each color. The proof is trivially extended to cover the two
closest nodes. We first show that “stale” information is removed
such that CBF can only terminate when the nodes in row 7 of
each node’s table are actually colored ¢;. We then show that
CBF only terminates when the node in this row is no further
from x than any other node of color c¢;.

To prove the first result, suppose x considers z to be its
closest node of color ¢;, yet z is no longer colored c;. Let
ng,M¢—1,...,no be any path along which the information

about z being color ¢; had propagated to z. Clearly, ng = =
and ny = z, where ng has the “wrong” information about z’s
color and n, has the “right” information, i.e., it knows that z
is not color ¢;. Thus, there is some minimum j where n; has
the “wrong” information and 71 has the “right” information.
We can consider all paths over which the information about z
propagated to = and choose the closest node to z that stores
z as color ¢;. Call this node y. y would then remove z from
¢; unless it used information from a node that was further or
equidistant from z than y. Hence, if y still “believes” that z is
still of color ¢;, then its observed distance to z grows. If it is
known that nodes are not moving, y could simply ignore any
reports that are not along the shortest path. Since y is the closest
node to z that still “believes” z to be of color ¢;, no node along
the shortest path could be reporting 2 to be of color ¢;, and ¥y
would have to choose some other node to be the closest node
of color ¢;.

If y did not use the observation that its distance to z increased,
then we have a situation where y is using stale information from
some other node that believes z to be the closest node of color
c¢;. Hence, there is a cyclic dependency among a set of nodes,
each believing the report of another that is supposedly closer to
z. This is the same phenomenon that leads to the count-to-in-
finity phenomenon in the Bellman—Ford algorithm. Over time,
y’s distance to z would increase to infinity. Eventually, the dis-
tance to another node of color ¢; would appear closer, and y
would choose this node to be its closest node of color ¢;.

To prove the second result, let ng,...,n, represent the
shortest path from y to x where y is a closest node of
color ¢;, and z’s ith row contains another node z where
d(z,y) < d(z,z). Again, n, has the “wrong” information
and ng has the “right” information. Thus, there is again some
minimum j for which ;1 has the wrong information and 7
has the right information. Clearly, under CBF, when n; learned
of this right information, it would update its tables and inform
its neighbors of the change, including n;4;. It follows via
induction on j that eventually n, learns the right information.m

CBF, coupled with the color-changing rule, allows nodes to
change their colors and deliver their new color information to
those nodes whose own color decisions are affected by that in-
formation. However, when nodes are actively changing their
colors, the lag in time it takes for a node to learn about another
node’s color change can lead to anomalous situations in which
the procedure does not stabilize. A simple illustration of this
phenomenon involves a graph to be colored with two colors,
where all nodes are initially colored c;, and propagation delays
between all pairs of nodes takes one unit of time. Since each
node’s distance to cs is infinite, all nodes simultaneously change
to ¢y and propagate their change information around the graph.
Upon learning in the next time unit that their nearest neighbors
are now colored c3, all nodes return to color c1, and the process
repeats indefinitely.

Our goal here is to prevent this anomalous behavior, but we
would like to permit as many locally unstable nodes to change
their colors simultaneously when these simultaneous changes
cause no such conflict.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

C. Asynchronous Color Change Procedure

Coping with the asynchrony and handling possible anoma-
lous behaviors is done by a 3-way handshake exchange using
four types of protocol messages: request, accept, reject, and
decision. These messages are used to ensure that the graph
will converge to a stable coloring in which all nodes are stable.
Before describing how these messages are used, we begin by
looking at a monotonicity property, one of the critical properties
that our protocol will satisfy to prove convergence.

1) Monotonicity Property: In Section V-A, we will show
that the protocol produces a stable coloring as long as é;(z) in-
creases whenever node = changes its color. Suppose a node x
changes its color from ¢; to ¢ at time ¢. For 6;(z) to increase, it
is sufficient to ensure that d;(x, c2) > 6;(x), which is satisfied
when the following two conditions hold:

e There exists a node (other than z) at distance St(:zz) from
 that is color c; at time ¢, ensuring that 6;(z) < 6(z).

* There is no node of color c; within distance ¢;() from =
at time ¢, ensuring that d;(, ca) > 6:(z).

Clearly, if these two conditions are satisfied, then so is
61(x) < di(x, c2). Hence, by changing to color ¢, at time ¢, we
have 6,/ () > 6.(z), where 6y (x) denotes the distance to the
closest other node of color ¢, to x immediately after changes
its color to c». In our distributed protocol, each node = changes
its color only when the above two conditions are ensured. Note
that 2’s decision uses only perceived distance information since
this is the only information that is available to the node.

Now let us present our distributed protocol, beginning by de-
scribing at a high level how the messages are passed between
nodes.

2) Protocol Messages: When x of color ¢ “perceives” (by
CBF) that it can change its color to ¢z by the coloring rule, i.e.,
when ,(z) < dy(w,¢2), it broadcasts a request message to all
nodes whose distance from x are smaller than or equal to b (z)
of z. We refer to this set of nodes as x’s time t disk.2 The request
message states x’s desire to change from color ¢; to color ¢,
and requests that one of the nodes in x’s time ¢ disk maintain
color c¢; and none of these nodes change to color cs.

A node y that receives a request message from x responds
either with an accept or reject message as follows. Node y im-
mediately sends x a reject message if y satisfies either of the
following properties:

e gy is of color cs.
e 1y is the node that x “thinks” is of color ¢y, but y is in fact
no longer of color c;.

Note that the former of the above two conditions, under which
y rejects x’s request, means that x’s perception of having no
nodes of color ¢ in its disk was incorrect. The latter condition
means that the node that depended on as the node of color c;
is no longer of that color, hence c; may be further away from x
than = had anticipated.

If neither of these properties hold, i sends = an accept mes-
sage. If y accepts x’s request to change from c; to ¢, then y

2In Section ITI-C4, we will discuss how to scalably implement scoped broad-
casting of messages within a node’s time ¢ disk and the corresponding feedback
mechanism.

KO AND RUBENSTEIN: DISTRIBUTED SELF-STABILIZING PLACEMENT OF REPLICATED RESOURCES IN EMERGING NETWORKS 5

is prohibited from changing from c; or changing to cs until it
receives z’s decision message.

Now, if any node rejects z’s request, x aborts the color
change. If all nodes accept z’s request, then x changes its
color. Whether x changes its color or aborts, it sends a decision
message to the same set of nodes to which it had sent a request,
removing the color-change restriction that was placed on these
other nodes.

3) Handling Deadlock/Livelock: Network propagation de-
lays are problematic when trying to coordinate message requests
within the network. In particular, we must address the possibility
that two nodes, z, and y, each wishing to change color, request
one another to hold their colors fixed until further notice. Nodes
cannot simply accept the other’s change requests when such
conflict arises, as this could lead to a livelocking phenomenon,
causing both to keep changing their colors. Both cannot simply
reject the other—this leads to a livelock, preventing one another
from changing to a “better” color. If both hold each other’s re-
quest until they receive accept or reject to their own requests, a
deadlock situation will arise. Also, it will often be the case that
the distances over which z’s and y’s messages travel will differ.
In particular, it could be the case that 6:(z) < d(z,y) < 6:(y).
Hence, even applying a simple tie-breaking rule between 2 and
y is difficult, because one of the nodes may not even be aware
of the conflict.

We address this dilemma by introducing a priority-based
holding mechanism, in which conflicting requests from
lower-priority nodes are held (without being responded) by
higher-priority nodes until the latter complete their decision of
whether or not to change.

More specifically, we have each node transition between two
states: STALLED and MOVING. A STALLED node is pre-
cluded from transmitting requests to change its color. Locally
stable nodes are by default always STALLED. A node is in
MOVING state when it has issued its request to change color
and has not yet issued its followup decision. Each node also
maintains three sets that hold requests that it receives from other
nodes: stalling, master, and slave. These messages are removed
from a set only after the outcome of the request is known (i.e.,
the request was rejected, or the decision corresponding to an ac-
cepted request was received). Furthermore, we assign arbitrary,
unique identifiers that can be used to impose a well-defined or-
dering among nodes. We write ¢ > 7 to indicate that node ¢ is
ordered before node j. Fig. 2 presents the state diagram relevant
to these procedures, which are described as follows.

Initially, a node is in the STALLED state. Upon sending a re-
quest, a node transitions to the MOVING state, and transitions
back to the STALLED state immediately after sending a deci-
sion message corresponding to the request that caused it to enter
the MOVING state.

When in the STALLED state, a node = places in its stalling set
any request that it accepts. cannot transition to the MOVING
state (i.e., cannot issue a change request) if its stalling set has an
entry that conflicts with z’s desired color change. In particular,
2 cannot change from color ¢y to color ¢ if there is a request
in its stalling set that asks to change to color ¢, or that depends
on x to be color c;.

REQUEST(y) :
If wrong, REJECT
Otherwise, ACCEPT & <y—»Stalling >

1) All accepted & Master is empty
REJECT Slaves & DECISION

2) Rejected :
ACCEPT Slaves & DECISION

Unstable & No conflict :

REQUEST

REQUEST(y) & Conflict:
Ify>x, ACCEPT & <y —»Master >
Otherwise, <y—®Slave >

Fig. 2. State diagram for handling protocol messages.

When in the MOVING state (= has issued a request), = places
anode y’s request in its stalling set if the request does not con-
flict with its own intended color change. However, if y’s request
does conflict, it differentiates the request based on the order of x
and y as follows. If z > y, then z places y’s request in its slave
set without accepting or rejecting the request. On the other hand,
if x < y, then x places y’s request in its master set and imme-
diately accepts the request. x will not change its color while its
master set contains accepted requests. A message in z’s master
set is deleted when x receives the decision regarding the mes-
sage.

If ’s request is accepted by all nodes and its master set is
empty, it rejects (and removes) all messages in the slave set,
sends a decision message, changes its color, and transitions to
the STALLED state. If z’s request is rejected, it accepts and re-
moves all messages in its slave set, transfers all messages in the
master set into the stalling set, and transitions to the STALLED
state without changing its color.

This prioritized STALLED/MOVING procedure prevents
race conditions by having requests from lower-priority nodes
“frozen” until nodes of higher order complete their decision
of whether or not to change. The protocol does not deadlock
because the node with the highest order that is in the MOVING
state will never be “frozen” by another node. A formal proof of
this claim is presented in Section V-A.

4) Implementing Scoped Broadcast and Feedback: We have
assumed that = has the ability to broadcast messages to nodes
in its time ¢ disk and scalably receive feedback from all of these
nodes. There are several ways to scalably implement this feed-
back mechanism, and choosing the right one depends heavily on
the underlying routing mechanism of the network. If a shortest
path multicast routing protocol is enabled in the network, a node
can broadcast a message by broadcasting it down this shortest
path tree, where at each hop, nodes on the path track the distance
the message has traveled from the source thus far. If a node re-
ceives a message that has traveled farther than the radius of the
disk, that node need not forward the message any further. If no
such protocol is available, a simple solution is to have each node

contact each of its neighbors. Again, by tracking the distance
traveled thus far, all copies of the message eventually die out,
but not until all nodes within the disk have been reached (often
several times). Less costly solutions can be implemented, but
due to lack of space, we demonstrate mere feasibility.

In both broadcast frameworks discussed above, a feedback
mechanism can be implemented to return accept or reject mes-
sages back to the original requester by sending the response to
each request received through a neighboring node back to that
neighboring node. When a node finds that it is not in conflict
with a request, it should not send back an accept immediately,
but instead wait first for accepts from all neighbors to which it
forwarded a request. Once all those neighbors have responded
with accepts, it too can forward its accept. If any neighbor sends
a reject message, that reject message can be forwarded imme-
diately to the node from which it was directly received from.
For instance, in a shortest path multicast tree, accepts propagate
back up the tree from which they came.

To summarize the ADC protocol, nodes use the distributed
CBF method to exchange updates with neighbor nodes of
nearest colorings. When a node wishes to change its color, it
broadcasts and receives messages about this color change that
respectively travel no further than the distance to the closest
node perceived to be of the same color. Since these procedures
occur within localized regions and have a small set of restric-
tions that prevent two nodes from simultaneously changing
color, many of the color changes can occur simultaneously. In
large-scale networks, this parallelism significantly reduces the
time to reach a stable coloring in comparison to a mechanism
that permits only a single color change at a time.

IV. DISCUSSION

In this section, we present some variations and extensions of
the graph coloring problem that may be of use in practice. For
each extension we can show that the ADC protocol will still
converge. Next, we discuss practical applications, for which our
protocol can offer useful solutions either directly or via one of
those extensions.

A. Extensions and Variations

1) Hardwired Nodes: We can relax the assumption that all
nodes participate in the ADC protocol and allow some nodes
to fix their colors during the execution of the protocol. This
is useful, for instance, in networks where there is an original
source of information from which replicas are copied, and the
point of origin of the information retains the original copy.

2) Assigning Multiple Colors to a Node: Each node can be
assigned an arbitrary number of colors that it can store. This
can be done by mapping the graph to another graph where a
node that can store £ colors in the original graph is mapped to an
£-clique of nodes that can each store one color, where the edges
between nodes in the /-clique have length zero.> Our coloring
protocol can be immediately used without modification if each

3To ensure the convergence of CBF, a very small positive value € can be as-
signed to the edges in ¢-clique.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

node with £ colors in the original graph performs the procedure
for ¢ independent nodes in the converted graph. The proof and
all supporting results follow trivially.

This can be of use in practice, when some node has larger
capacity than the others, for example, nodes with big storage, a
wireless node supporting multiple channels, etc.

3) Variable Density Coloring: Each color ¢; can be as-
signed a density, 3;, such that a node y of color ¢; is considered
to be “closer” to x than a node z of color ¢; whenever
B1di(y,z) < P2di(z,x). Nodes of colors with larger density
will more densely populate the graph. For instance, consider
coloring a given graph with two colors ¢; of density € and ¢ of
density 1/¢ as ¢ — 0. Having a single node x of color ¢; in the
graph is sufficient, since no matter how physically far this node
is from another node y in the graph, 81d(x,) is infinitesimally
small.

B. Applications

1) Wireless Channel Allocation: In multichannel wireless
networks, transmissions can still conflict under conventional
channel allocation mechanisms that assign different channels to
nodes that share a common communication neighbor. This is be-
cause the interference range of a node is typically greater than
its transmission range. Moreover, nodes’ mobility in such net-
works gives rise to a need to reconfigure the channel assignment
as the topology changes.

Our graph coloring protocol creates long distances between
nodes utilizing the same channel (represented by color) given
a fixed number of channels. This reduces both the interference
level and the frequency of channel reconfiguration. Even when
the allocation by our coloring needs to be reconfigured, this can
be done quickly as the simulation results in Section VI indicate.
However, a more thorough evaluation in highly dynamic envi-
ronments is yet to be done.

2) Distributed Leader Election: Leader election algorithms
are useful building blocks in network protocols that impose a hi-
erarchical structure, e.g., in hierarchical routing in large scale ad
hoc networks. One challenge in those protocols is to distribute
the burden of being leader. Using the method for assigning mul-
tiple colors to a node, our coloring protocol can be applied in
this environment such that each node can find a node of every
other color in some of its neighbors. Once the protocol stabi-
lizes, the leader re-election problem simplifies to having each
node take its turn for being the leader.

3) Distributed Resource Directory Service: In large scale
distributed networks that require decentralized directory ser-
vices, the cost of using the directory is reduced if the directory
information is accessible at nearby nodes. Our protocol can be
used to map each index (or set of indices) of the resource (or
content) to a specific color using a predetermined method such
as a hash function, having the index to be stored at a nearby
node. An additional benefit of our protocol is that, while de-
termining the location of resources, the direction that a search
should take to reach the closest copy of the index is computed
at each hop (by CBF). This makes it trivial to design a search
that heads directly toward the closest copy of the index.

KO AND RUBENSTEIN: DISTRIBUTED SELF-STABILIZING PLACEMENT OF REPLICATED RESOURCES IN EMERGING NETWORKS 7

V. ANALYSIS

In this section, we prove the convergence of our ADC pro-
tocol, and provide formal results about its performance in com-
parison to “optimal” colorings.

A. Convergence

We begin by proving that the ADC protocol always converges
to a stable coloring, i.e., nodes all reach a point where they cease
changing their color and therefore cease sending messages.

Claim 2: If node z is in the STALLED state and node y has
an accurate view of node colors (in particular, & (y) = 6;(y) and
cft(y, ¢i) = di(y, ;) forall 1 <4 < k), then 2 will not prevent
y from changing color (i.e., x does not “freeze” y’s messages).

Proof: Since x is STALLED, its slave set is empty.
Hence, it does not “freeze” messages. Since y has an accurate
view of the network coloring and has issued a request, no node
will reject the request. z will therefore immediately accept the
request. [|

Claim 3: If the graph is unstable, then there exists a node that
is or will be in the MOVING state.

Proof: Our proof is by contradiction. Assume the graph
is unstable, yet all nodes remain in the STALLED state indefi-
nitely. Since nodes cannot issue requests to change color in the
STALLED state, the coloring ceases to change. Since CBF is
used to perform color updates, we have from Claim 1 that all
nodes will eventually obtain the correct coloring of the graph.
Thus, any node y that is unstable will eventually become lo-
cally unstable. In such a case, the only event that keeps y in the
STALLED state is a node, =, whose request conflicts with the
request that y would like to issue. If = has a pending request,
it must be in the MOVING state, contradicting our assumption.
On the other hand, if z is in the STALLED state, it follows from
Claim 2 that z will not prevent y from changing color, hence no
node stops y from going to the MOVING state, again leading to
a contradiction.]

Lemma I (Liveness): If the graph is unstable, then some node
will eventually successfully change its color.

Proof: Our proof is by contradiction. Assume the graph is
unstable but no node ever changes color. By Claim 1, all nodes
eventually have correct view of graph coloring. Since the graph
is unstable, by Claim 3, there exists a node that is or will be in the
MOVING state. Let v be the node of highest order among those
in the MOVING state. Since v’s order is higher than any other
nodes in the MOVING state, v is not in the slave set of any other
node (only nodes in the MOVING state may have a nonempty
slave set, and all such nodes have lower order than v). Further-
more, since v has the correct view of graph coloring, v’s request
cannot be rejected. Hence nothing can stop v from changing
its color, which contradicts the assumption that no node ever
changes color.]

Our final lemma, before proving our first main result, is
similar in flavor to a lemma we presented in [12] that proves
the convergence of the coloring rule on a graph whose edges
have identical length. The proof in this lemma requires that
we consider a vector V(t) = (0:(n1),0:(n2),-..,0:(nn))),
where {n1,7n2,...,ny|} are all the nodes of the graph, or-
dered such that 6;(n;) < 64(n;41) forall 1 < i < |N|, ie.,

V(¢) is an ordered |N|-component vector whose components
are the &;(x) for all nodes z. We say vector V(t) < V()
when V(t) is lexicographically smaller than V (t'), ie., if
V(t) = (v1,02,...,9n)) and V(') = (w1, w2,...,wyN|)
then there is some 0 < ¢ < |N| where v; = w; forall j < ¢
and v; < w;.

Claim 4: 1If z is the only node that changes color between
time ¢ and ¢/, then 6y () > 6:(x).

Proof: Let x change from color ¢; to color ¢ at time
T,t < 7 < t'.4 By the 3-way handshaking protocol, = can
change its color only when its request to change from ¢; to
¢2 has been accepted by all nodes within distance 6,(z), which
means that at time ¢, there is at least one node of color ¢; at dis-
tance 6, () and no node of color ¢, in z’s time ¢ disk. Hence =
changes color after ensuring that &, (z) = 6;(z) and dy(z, ¢2) >
5t(z) Since no other node in z’s time ¢ disk changes color
between times ¢ and ¢/, 6y () > &,(z), and hence 6y (z) >
5t(£17) |

Lemma 2 (Monotonicity): When one node changes color be-
tween times ¢ and ¢/, then V (¢) < V (¢').

Proof: Let z be the one node that changes from color ¢; to
color co. We have 6y () > 6;(x) from Claim 4. Consider any
node y where 64 (y) < 6:(y). For this decrease to occur, some
node that at time ¢ was not colored C¢(y) = Cy (y) must have
changed to Cy/(y) by time ¢'. Since only « changed its color
during this time interval, the node must be 2 and Cy (y) = ca.
Since z is no closer than 6,/ (z) to a node of the same color at
time ¢’ and z is now the closest node of color ¢y to y, we have
that 6 (y) = d(y,x) > 64 (x). Thus, §¢(z) < by () < 6p(y),
i.e., some component of V() increased to yield V' (¢') (in this
case, the component contributed by node x), and any decreasing
components remain larger than the final value of the increased
component (for instance, y’s component). This is clearly a lex-
icographic increase, hence V(t) < V (¢').]

Theorem 1 (Convergence): ADC Protocol converges to a
stable coloring.

Proof: 1If the graph is unstable, by Lemma 1, there will al-
ways be at least one node which changes its color, and whenever
a node changes its color, by Lemma 2, there is a lexicographic
increase in V(t). Since each component is either bounded by
the maximum diameter of the graph or else equals co, we must
reach a time T where V (¢) is fixed for all T’ > ¢. This means that
nodes cease changing their colors, and therefore the coloring is
stable. [|

B. Formal Bounds

Now we prove some theoretical bounds on color distances
generated by our distributed protocol. For the purpose of
evaluating the performance of a stable coloring, we define the
super-optimal distance of a node as follows.

Definition 1: The super-optimal distance of a node x in a
graph that is colored with k colors, d,,:(z), is the distance to
the kth closest node to x including x.

The super-optimal distance of a node is the minimum distance
for which there exists a coloring in which the node can reach all

4If two nodes change at exactly the same time, clearly the result is the same
as in a system where the difference in time is positive but bounded below any €.
We can then choose * and ¢’ such that their difference is less than €.

W22 W
2w

Fig. 3. Example of stable coloring: max d(x, ¢;) = 3dope().

k colors (including its own color). We coin the term as “super-
optimal” because for a large number of graphs, there is no single
coloring in which each node can reach all colors within its super-
optimal distance.

Theorem 2: If the graph is stable, then for each node
z,di(z,c;) < 3dopi(z) for all ¢ = 1,... k. This is a tight
bound.

Proof: Consider an arbitrary coloring of a graph in which
there is a node and a color ¢; where d(z,¢;) > 3dopt().
Let y be the closest node to = of color ¢;. Since there are at
least k nodes within distance d,p,¢ () from 2, and none of which
is color ¢;, there are two nodes w and z within this distance
that are both of the same color, ¢;. Since both of these nodes
are within distance dop¢(z) from z, they are at most distance
2dopt(z) from one another, and more than distance 2dops (%)
from any node of color ¢;. It follows that neither w nor z is

stable, hence the graph is not stable.]
We note that this bound is tight, i.e., that there can exist a
stable coloring in which d(z,c¢;) = 3d,pe(x) for some color

¢;. Fig. 3 demonstrates this, where all edges in the figure have
weight 1 and each node is labeled by one of four colors. The
node colored Y has super-optimal distance of 1, the coloring of
the graph is stable, and a distance of 3 is needed to reach color
w.

Our next result extends the k-hop bound Lemma for unit-
length edge graphs in [12] to graphs whose edge lengths are
arbitrary.

Lemma 3: Let Dy (x) be the minimum distance from node
x to a node that is k& hops from z. Then for any color ¢; #
Cy(x),di(x,¢;) < Di(z) in a stable coloring.

Proof: The proof is by contradiction. Suppose, for some
node x and for some color ¢; # Ci(x),di(z,¢;) > Dy(x) ina
stable coloring. Since there exist at least k£ nodes (including z)
along any shortest path from x leading to a closest node of color
¢;, two nodes along the path must be of the same color. Consider
any shortest path from z to a node of color ¢;. Let y and z be two
nodes of the same color c; on this k-hop path, where, without
loss of generality, y is the closer node to x along this path (y
may in fact be x, in which case ¢; = Cy(x)). It is easy to see
from the properties of a shortest path that y is closer to z than to
any node of color ¢; — otherwise 2 would be closer to this node
of color ¢; than to z, violating the assumption that no node of
color ¢; is within k& hops from x. Hence, y is unstable, leading
to a contradiction. [|

Corollary 1: Let wmax be the weight of the longest edge in
the graph and & be the number of colors. In any stable coloring,
di(x,c¢;) < kwpay for all colors ¢;,7 = 1,..., k, and all nodes
T.

Corollary 2: Tf all edges in the graph (V| FE) have the
same edge weights, then for all nodes x and all colors
¢;,t = 1,...,k,x can reach ¢; within £ — 1 hops when the
graph has converged to a stable coloring.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

The above bounds are tight when applied to the general class
of connected graphs, since the equality holds for the case of a
chain containing k nodes and k£ — 1 unit-length edges. Last, we
present a Lemma that lower-bounds the distance between nodes
of the same color.

Lemma 4: 6¢(x) > dopt () in a stable coloring.

Proof: Consider a coloring where 6;(z) < dopt(). Since
fewer than & nodes are within distance 6;(z) of z, there is some
color ¢; # Cy(x) for which dy(z,¢;) > 6:(x). Hence, the col-
oring is not stable.]

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our protocol
via discrete event-driven simulation, measuring its transient be-
havior (time to converge to a stable coloring, number of mes-
sages per node) as well as the quality of the colorings produced
in the context of the distances to colors. Each simulation run
is performed on a connected, undirected graph, which is gener-
ated randomly as follows. Given a set of nodes, edges are added
to the graph between pairs of nodes chosen uniformly, and edge
weights are selected uniformly at random within the interval [1],
[10]. We vary the number of edges that are added and only select
graphs that are connected (we add additional edges at random
when the graph is not connected). We then classify graphs by
the average degree of the nodes. Results presented here, unless
explicitly stated otherwise, are based on graphs whose average
degrees round to 5, i.e., are between 4.5 and 5.5.

We vary the number of nodes, n, that form the graph and gen-
erate 100 different random graphs for each value of n consid-
ered. For each graph, we vary k, the number of colors that are
used to color nodes in the graph, and run a separate simulation
for each value of k and each graph. At the start of the simulation,
anode is assigned a color (from the k) uniformly at random and
all nodes transmit CBF update messages. The simulation ter-
minates when there is no outstanding message from any node,
meaning the graph is stable. The message propagation delays
along the edges are proportional to the weight of the edge. We
choose proportional delays as a starting point for the simulations
since often the edge weights are simply a measure of delay. We
reiterate that the protocol will converge regardless of what tem-
poral or spatial dependence exists between edge delays and edge
weights.

A. Transient Behavior

We evaluate the transient behavior of the protocol by mea-
suring convergence time, the number of color changes and mes-
sages sent or forwarded per node. The convergence time is mea-
sured as the time elapsed until the graph enters a stable state,
starting from the instance that every node is assigned a randomly
chosen color.

Fig. 4 depicts the average convergence time with 95% con-
fidence intervals from the simulations as we vary the number
of nodes in the graph and the number of colors. In Fig. 4(a),
we vary the number of nodes along the z axis, with each curve
fixing the number of colors used in that set of simulations. We
see that as n grows large, the increase in time grows in a log-
arithmic manner. Fig. 4(b) replots these points but varies the

KO AND RUBENSTEIN: DISTRIBUTED SELF-STABILIZING PLACEMENT OF REPLICATED RESOURCES IN EMERGING NETWORKS 9

750

500 |

XX XXX
I

250 -

¥

convergence time

100 150 200
of nodes

(a)

750

500

250

convergence time

of colors
(b)

Fig. 4. Convergence time. (a) Convergence time versus graph size.
(b) Convergence time versus number of colors.

number of colors along the x axis with each curve fixing the
number of nodes used in that simulation. We see that the con-
vergence time grows sublinearly with a change in the number
of colors, but clearly the time is more sensitive to the number of
colors than it is to the number of nodes. These results confirm
the intuition that localized regions quickly fill with all possible
colors, such that colorings in areas of the graph distant from
a node have little impact on its coloring decision. Intuitively,
increasing the number of nodes merely increases the number
of these regions, having little effect on their individual conver-
gence times, while increasing the number of colors increases
the area of each region (and hence the super-optimal distance
of each node), resulting in more time taken for the protocol to
converge.

Fig. 5 plots the convergence time of the graph versus the av-
erage super-optimal distance of nodes in the graph over all simu-
lation runs where n = 100, irrespective of the number of colors
or average degree of the graph. The plot suggests that conver-
gence time is roughly proportional to the average super-optimal
distance of a graph. This supports our intuition described above,
in that the super-optimal distance is a rough indicator of the size
of the region that a node must observe to determine its own color.

Next, we turn our attention to the number of times a node
changes its color. Fig. 6(a) and (b) plots the average number of
color changes and of color change requests per node, respec-
tively, as a function of the number of nodes in the graph. We
see the average number of changes per node is between 0 and
2, while the number of the attempts to change color (including
those that subsequently cancel) is roughly double the number
of changes. These preliminary results suggest that the number
of color changes, while somewhat sensitive to the number of

+
)
£ 500t
@
(]
c
5]
>
Q 250+
c
S
(]
0
15
average dop,(x) of graph
Fig. 5. Convergence time versus super-optimal distance.
| | k=
g |k
8 2k
2 k=
=)
C
<
=
S 1t .
P 3
9
o =+ " "
5 s + + +
#* 0
0 50 100 150 200
of nodes
(a)
o 5 T
B k=
< k= :
g 4k ‘
2 k= 0]
8 3 L k: 4
3 *
1)
o 2T
s}
5
c 17
° + 4 + —+
k)
0 . - . .
0 50 100 150 200
of nodes
(b)

Fig. 6. Number of color changes/requests per node. (a) Number of color
changes per node. (b) Number of color change requests per code.

colors, appears to grow slowly in both the number of nodes and
colors.

Fig. 7 depicts the average number of messages transmitted
by a node, including CBF updates as well as request, decision,
accept and reject messages. In the simulation, request, decision,
accept, and reject messages are forwarded within the time ¢ disk
along the shortest-path tree rooted at z. CBF update messages
received at z from a neighbor y regarding the color change of
node z are disregarded (and not forwarded further) when vy is
not on the shortest path from z to z.

Fig. 7(a) plots the average number of messages transmitted
over all types of messages, and Fig. 7(b) restricts the plots to
only those messages that are not CBF updates. We note that the
CBF update messages contribute to roughly 2/3 the message
overhead.

We again observe a logarithmic increase in the growth as a
function of n, suggesting again that the rate of increase in the
number of messages transmitted by a node as a function of n
becomes negligible as n grows large. While the total number

3000

k=2
§ o == '
C 20 B
: k=20 -
g 2000, 755 - .
» |
i)
o
©
123
w .
£ E |
= : *
; %
100 150 e
of nodes
(a)
3
8 - : ' | I Y
a puci o
Q k=
» 750k .
S k=
g k=
2]
& 500f
1S
0
O 250+ B)
C
2 . *
ks) 0 ' ¥ | T
#* 0 50 100 150 X
of nodes
(b)

Fig. 7. Number of messages per node. (a) All messages. (b) Non-CBF
messages.

of messages at first glance seems high for large values of k, we
suspect the number is negligible in comparison to the number of
messages that these same environments will require as part of
the routing protocol, or in comparison to the amounts of data that
will be transmitted. In addition, we have made no attempts to
optimize the number of messages and suspect that aggregation
and randomized suppression techniques can significantly lower
the number of messages transmitted (for example, we could
“piggyback” some update messages in decision messages).

B. Coloring Distance

We evaluate the performance of our protocol by comparing
the color distances in stable graphs generated by the protocol
to the super-optimal distances and to distances in graphs where
each node chooses its color uniformly at random.

Fig. 8(a) depicts the distance from each node to its furthest
color within the stable coloring, i.e., max;j<;<i d(x,¢;) aver-
aged over all nodes x. As expected, this distance remains con-
stant as n is varied, i.e., proximity to the furthest color is insen-
sitive to the size of the graph. Given the expected exponential
increase in the number of nodes that can be reached as one in-
creases the travelling distance linearly, it follows our intuition
that this distance appears to be on the order of log k for large n
(note that each curve roughly doubles the number of colors and
are evenly spaced apart).

Fig. 8(b) plots the node’s distance to its furthest color
normalized by its super-optimal distance in the graph, i.e.,
(maxy<i<k d(z,¢;))/(dopt(z)). While we have shown that
this value can be as high but no higher than 3, in practice we
find the value no higher than 1.2 on average. This is quite
impressive when one considers the fact that this value cannot

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

30 :
T 207r
X
= - -
©
E 10} =) 3]
*
O I L 1 1
0 50 100 150 200
of nodes
(a)
1.3 T T T T
k=
k=
P b
g l.2rk= 1
o k=50 ----- L mmmmTIIIIIIITT -
Y *
% 1.1¢
% X
© B
£
1} %@
0 50 100 150 200
of nodes
(b)
Fig. 8. Distance to furthest color. (a) max d(x, ¢;).
(b) (max d(w, ¢;))/(dope()).
c e '
5
5
Eel
@
©
(o]
=
5
3
€
3 Stable ——
0 L . Random -
1 1.5 2 25
max d(x,ci)/dopl(x)
(a)
1 :
gtabclje _—
C | Random --eeeeee
S osl andom
]
2
® 0.6+ 1
©
o
2 04} 1
©
po}
E 02t 1
(8]
0 poet L L L
0 0.5 1 1.5 2

8(x)/d0p,(x)
(b)

Fig. 9. Color distance comparison: Stable Coloring versus Random coloring.

(@) (max (.)/ (dogi ().) (3(2))/ (dopi ().

be less than 1 and often there is no coloring for which this value
is 1 simultaneously for all nodes.

Finally, we compare the coloring distance in the stable graphs
to that of random colorings in which nodes select their colors
uniformly at random. Fig. 9(a) plots the fraction of nodes over

KO AND RUBENSTEIN: DISTRIBUTED SELF-STABILIZING PLACEMENT OF REPLICATED RESOURCES IN EMERGING NETWORKS 11

all simulation runs whose distance to the closest node of the fur-
thest color is less than z times the super-optimal distance. The
curves plot results for both colorings generated by our protocol
and those generated at random, where x is varied along the x
axis. The results are taken from all simulations with n = 200
and k£ = 20. The gain obtained by using our mechanism is clear.
For example, almost 80% of nodes in colorings generated by
our protocol have the distances to their furthest color within a
factor of 1.25 of their super-optimal distances, while only 10%
of nodes are within this factor in a random coloring. Similarly,
almost all nodes in a coloring generated by our protocol have
the distances to their furthest color within a factor of 1.5 of their
super-optimal distance in a coloring generated by our protocol
while only 60% are within this factor in a random coloring.

Fig. 9(b) plots the fraction of nodes whose distance to the
closest node of the same color is within a factor of z of the
super-optimal distance. As proven in Lemma 4, this factor never
falls below one, whereas in a random coloring, this factor is
less than one for more than 50% of the nodes. This significant
improvement is observed in all the other sets of simulations with
different parameters.

VII. RELATED WORK

In [12], we presented a very preliminary centralized version
of the greedy coloring protocol used here. The work makes mul-
tiple simplifying assumptions that preclude its use in practical
networking environments. First, it was assumed that only one
node could change its color at a time—a difficult property to
ensure in a distributed, asynchronous medium. Second, it was
assumed that each node could obtain from an oracle the current
coloring of all other nodes within the rest of the graph. Last,
all graph edges were assumed to be unit length. We relaxed all
of these assumptions in [13], which we extend in this paper by
providing additional theoretical and experimental results.

Our goal of optimizing distance to the nearby copy of re-
source shares many similarities with the optimal facility location
problems. There have been numerous results in this area, such
as polynomial-time, constant-factor approximation algorithms
[31, [71, [15], and greedy methods [8] that further improve upon
previous approximations. Ref. [10] is probably the most closely
related to our work in the sense that it solves the problem of
placing replicated objects in arbitrary nodes in the network, but
it uses an off-line, centralized algorithm, and to our best knowl-
edge, there has been no exploration of simple distributed ap-
proaches that address the problem in our context.

A large body of work has also looked at the problem
of placing replicas within peer-to-peer overlays [11], [14].
However, these works differ from ours in that the focus is on
identifying content that is popular and ensuring that this content
is placed nearby. Our goal, in contrast, is to find a placement
strategy that minimizes the distance that needs to be searched
to find an arbitrarily chosen piece of content.

VIII. CONCLUSION

We have presented a decentralized, fully distributed, scalable
protocol that places replicated resources in a network of arbi-

trary topology such that the furthest distance one must travel
to find a particular copy of a resource is only slightly larger
than optimal, and the distance between identical copies is large.
Simulation results suggest that running time, messages, and the
number of color changes for a node scale logarithmically in the
number of nodes in the graph and colors used to color the graph.
These properties make the protocol ideal for assigning locations
of replicated resources that are needed in emerging distributed
networking environments such as ad-hoc, sensor, and overlay
networks.

There are a number of interesting open problems of both
a theoretical and practical nature. First, it remains an open
question as to whether the convergence time of our distributed
protocol is polynomial in the number of colors and nodes
of the graph. Simulation results suggest this to be the case,
but we have not yet been successful in demonstrating this
formally. Another challenge is dealing with frequent changes in
topology, either due to node movement, node failure, or joining
and leaving of participants, which is a common characteristic
of these emerging networking environments. Since our protocol
converges quickly starting from a random coloring, we suspect
it will also quickly adapt to such changes. However, shifting
of replicated resources may be expensive and so the practical
details of such shifts must be considered.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their helpful
and constructive comments.

REFERENCES

[1] M. Adler, private communication.

[2] A. A. Bertossi and M. A. Bonuccelli, “Code assignment for hidden
terminal interference avoidance in multihop packet radio networks,”
IEEE/ACM Trans. Networking, vol. 3, no. 4, pp. 441-449, Aug. 1995.

[3] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys, “A constant-factor
approximation algorithm for the k-median problem,” J. Comput. Syst.
Sci., vol. 65, no. 1, pp. 129-149, Aug. 2002.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

1. Foster and C. Kesselman, Eds., The Grid: Blueprint for a New Com-

puting Infrastructure. San Mateo, CA: Morgan Kaufmann, 1999.

[6] Gnutella [Online]. Available: http://www.gnutella.co.uk/

[71 A. Goel, P. Indyk, and K. R. Varadarajan, “Reductions among high

dimensional proximity problems,” in Proc. Symp. Discrete Algorithms

(SODA), Washington, DC, 2001, pp. 769-778.

<PLEASE PROVIDE PAGE NUMBERS.> S. Guha and S. Khuller,

“Greedy strikes back: Improved facility location algorithms,” in Proc.

Symp. Discrete Algorithms (SODA), San Francisco, CA, Jan. 1998.

[9] L. Hu, “Distributed code assignments for cdma packet radio network,”

in IEEE/ACM Trans. Networking, vol. 1, Dec. 1993, pp. 668—677.

<PLEASE PROVIDE PAGE NUMBERS.> J. Roberts, J. Kan-

gasharju, and K. Ross, “Object replication strategies in content
distribution networks,” in Proc. Web Caching and Content Distribution

Workshop (WCW’01), Berlin, Germany, Jun. 2001.

<HOW MAY THIS REFERENCE BE ACCESSED? URL?> J. Kan-

gasharju, K. W. Ross, and D. A. Turner, “Optimal content replication in

P2P communities,”, 2003. manuscript.

<PLEASE PROVIDE PAGE NUMBERS.> B.-J. Ko and D. Ruben-

stein, “A greedy approach to replicated content placement using graph

coloring,” in Proc. SPIE ITCom Conf. Scalability and Traffic Control in

IP Networks 11, Jul. 2002.

<PLEASE PROVIDE PAGE NUMBERS.> B.-J. Ko and D. Ruben-

stein, “Distributed, self-stabilizing placement of replicated resources in

emerging networks,” in Proc. 11th IEEE Int. Conf. Network Protocols

(ICNP 2003), Nov. 2003.

[5

—

[8

=

[10]

[11]

[12]

[13]

[14] <PLEASE PROVIDE PAGE NUMBERS.> <2001 OR 2002?>L. Qiu,
V. Padmanabham, and G. Voelker, “Replication strategies in unstruc-
tured peer-to-peer networks,” in Proc. ACM SIGCOMM’01, Aug. 2002.

[15] D.B. Shmoys, E. Tardos, and K. Aardal, “Approximation algorithms for
facility location problems (extended abstract),” in ACM Symp. Theory of
Computing (STOC), El Paso, TX, May 1997, pp. 265-274.

Bong-Jun Ko (S°02) received the B.S. and M.S. de-
grees in electrical engineering from Seoul National
University, Seoul, Korea, and is currently working to-
ward the Ph.D. degree in electrical engineering at Co-
lumbia University, New York, NY.

He worked as a Research Engineer at LG Elec-
tronics in Korea before joining Columbia University,
and has interned at IBM T. J. Watson Research Lab-
oratory, Yorktown Heights, NY. His current research
interests include large-scale distributed systems and
mobile and wireless networks.

Mr. Ko is the recipient of the 2003 IEEE ICNP Best Paper Award.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 3, JUNE 2005

Dan Rubenstein (M’00) received the B.S. degree in mathematics from the
Massachusetts Institute of Technology, Cambridge, the M.A. degree in math-
ematics from the University of California at Los Angeles, and the Ph.D. degree
in computer science from the University of Massachusetts, Amherst.

He has been an Assistant Professor of Electrical Engineering and Computer
Science at Columbia University, New York, since 2000. His research interests
are in network technologies, applications, and performance analysis, with a re-
cent emphasis on resilient and secure networking, distributed communication
algorithms, and overlay technologies.

Dr. Rubenstein has received a National Science Foundation CAREER Award,
the Best Student Paper Award from the ACM SIGMETRICS 2000 Conference,
and a Best Paper Award from the IEEE ICNP 2003 Conference. He has been a
member of the ACM since 2000.

