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Abstract— Internet flash crowds (a.k.a. hot spots) are a phe-
nomenon that result from a sudden, unpredicted increase in an
on-line object’s popularity. Currently, there is no efficient means
within the Internet to scalably deliver web objects under hot
spot conditions to all clients that desire the object. We present
PROOFS: a simple, lightweight, peer-to-peer (P2P) approach that
uses randomized overlay construction and randomized, scoped
searches to efficiently locate and deliver objects under heavy
demand to all users that desire them. We evaluate PROOFS’
robustness in environments in which clients join and leave the
P2P network as well as in environments in which clients are not
always fully cooperative. Through a mix of simulation and pro-
totype experimentation in the Internet, we show that randomized
approaches like PROOFS should effectively relieve flash crowd
symptoms in dynamic, limited-participation environments.

Index Terms— peer-to-peer networks, flash crowds, hot spots,
World Wide Web (WWW)

I. INTRODUCTION

Internet Flash Crowds (a.k.a. hot spots) are a phenomenon
that result from a sudden, unpredicted increase in an on-
line object’s popularity. Examples include the news pages
at www.cnn.com and www.nytimes.com on September 11th
and immediately following the plane crash in New York on
November 12th. During the very times when content reaches
its apex in popularity, it becomes unavailable to the majority
of users that seek it.

There are several approaches to remedy the problem. A
straightforward but costly approach is to provision accessi-
bility based on peak demand. An alternative approach is to
dynamically increase server locations of the popular docu-
ments. Content distribution companies such as Akamai have
identified ways to offload the burden placed on servers to
transfer embedded objects. However, to prevent flash crowds
from overloading servers with requests for container pages,
significant changes must be made to the Domain Name System
(DNS) so that clients’ initial requests can be also immediately
be redirected to available resources. In particular, the time
for which a DNS entry is cached must be kept short or a
mechanism must be added to allow updated DNS entries to
be pushed down the DNS caching hierarchy.
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A third approach is to have the clients form a peer-to-
peer (P2P) overlay network that allows those clients that have
received copies of the popular content to forward the content
to those clients that desire but have not yet received it. In
this paper, we describe and evaluate our implementation that
applies this third approach on top of overlay topologies gener-
ated essentially at random to scalably, reliably deliver content
whose popularity exceeds the capabilities of standard delivery
techniques. We call this system PROOFS: P2P Randomized
Overlays to Obviate Flash-crowd Symptoms.

PROOFS is not meant to replace the existing web-based in-
frastructure that utilizes DNS. It is instead designed to support
that infrastructure at times when a flash crowd overwhelms
the original architecture’s capabilities - an idea similar to that
described in [1], [2]. PROOFS consists of two protocols. The
first forms and maintains a network overlay that connects
the clients that participate in the P2P protocol. The overlay
construction is an ongoing, randomized process in which nodes
continually exchange neighbors with one another at a low
rate. The second protocol performs a series of randomized,
scoped searches for objects atop the overlay formed by the
first protocol. Objects are located by randomly visiting sets of
neighbors until a node is reached that contains the object.

The distributed protocol that forms the overlay is unique in
that we seek to “randomize” the connectivity in the overlay. In
particular, we make no effort to connect nodes that are “close”
to one another with respect to a distance metric such as end-
to-end delay. While this approach may cause an increase in
search times, the randomness of the topology makes the system
more robust: if and when nodes join and leave the overlay,
little needs to be done to adjust the topology to accommodate
the changes in overlay membership. In addition, since a query
results in numerous searches performed in parallel, with high
likelihood there will be many paths that choose (at random)
nodes that are topologically close. Since the time taken to
retrieve an object is the minimum time taken by any search
path that locates the object, we conjecture that it is highly
likely that some path that locates the object will consist mainly
of “short” edges, making expected search times low.

The search protocol itself has many similarities to protocols
used by applications such as Gnutella and is not strikingly new.
However, unlike the majority of other proposed approaches
that are not specifically designed to handle flash crowds,
PROOFS does not require users to cache copies of objects
or pointers to objects outside from what they have explicitly
requested. As demonstrated by our analysis in [3], when run
atop a randomly-connected overlay, this simple search protocol
quickly retrieves “hot” objects with low bandwidth overheads.
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Our work here makes several novel contributions. In partic-
ular, we demonstrate that undirected searches atop randomly-
formed overlays for “hot” content

� are robust to users (nodes) joining and leaving the overlay
network with time.

� are resilient in environments where a majority of users
limit their participation in the search process by either
restricting the manner in which they forward other users’
queries (including not forwarding them at all) as well as
not returning copies of a requested object even when a
copy exists locally.

Last, we evaluate a prototype implementation on a testbed
comprised of end-systems scattered around the world. Al-
though small in scale compared to how we hope the system
will eventually be used, the testbed demonstrates that latencies
and traffic utilizations by the system are low enough to make
the approach feasible in today’s networks.

The paper proceeds as follows. In Section II, we overview
related work. Section III describes the basic architecture of
PROOFS. In Section IV, we evaluate our design’s robustness
in the face of dynamic changes to overlay membership and
clients who offer limited participation. Section V presents
experimental results using a prototype version of PROOFS
upon the real Internet. We discuss some limitations, future
directions, and challenges in Section VI and conclude in
Section VII.

II. RELATED WORK

The idea of flash-crowd alleviation via replication was
previously considered in [4]. However, the architecture there
involves an elaborate communication and exchange mecha-
nism between servers within the network, having been devel-
oped before the notion of peer-to-peer communication became
popular. The idea of designing a peer-to-peer system that
operates as a “backup” to the existing DNS/Web infrastructure
to support loads brought on by flash crowds was recently
proposed in [1], [2]. Other works that have designed systems
that use client collaboration for anonymous and secure content
distribution or preservation, but not necessarily within the
context of flash crowds, are Crowds [5] and Publius [6].

This paper focuses on the robustness of PROOFS in overlays
where protocol participants may limit their participation in the
protocol. Our main focus here is not to evaluate its scalability
as a function of time to recover objects and messages sent
throughout the network as the number of participants grows.
A thorough investigation of that problem appears in a separate
work [3], where we analyze and simulate a discrete-event
version of a randomized, scoped search protocol that is the
basis of PROOFS. There, we show that upon randomized
topologies, such systems can effectively scale to overlays that
contain millions of participating clients.

Randomized overlays are also considered in mobile envi-
ronments [7], [8]. However, there the “shape” of the overlay,
and therefore the performance of the approach, is a function
of how users move through the system and their transmission
constraints. In PROOFS, we can further optimize the overlay,
given that we expect that at all times, any pair of participants

can communicate directly atop the underlying IP substrate as
long as one participant has the identity (e.g., the IP address)
of the other.

A significant amount of attention has been paid to structured
P2P architectures such as CAN [9], CHORD [10], [11],
PASTRY [12] and Tapestry [13], in which participants have
a sense of direction as to where to forward requests. For
unpopular documents, structured architectures clearly provide
benefit over their unstructured counterparts in terms of the
amounts of network bandwidth utilized and the time taken
to locate those documents. However, to be able to handle
documents whose popularity suddenly spikes without inun-
dating those nodes responsible for serving these documents,
these architectures must implement a caching mechanism that
caches the objects, as is proposed in [14]. It is unclear whether
the transfer overheads such an approach makes sense in a
browser-like environment where clients join and leave the
system at high frequency. Last, we suspect that members of
the overlay who do not participate fully (e.g., drop requests or
refuse to transmit objects) will significantly limit the efficiency
of these approaches.

Network paradigms such as multicast [15] and anycast [16],
[17] can also be used to retrieve “hot” objects at a relatively
low cost. Multicast is problematic in that it is difficult to
appropriately scope queries to prevent flooding within the
network of simultaneous user requests. Anycast is a paradigm
that can be used to direct users toward massively replicated
content. but does not solve the problem of automating the
process of dynamically replicating the content when a hot spot
arises.

A wide body of work has considered the theoretical prob-
lem of resource location in networks. However, the models
considered are often not directly amenable to the problem of
delivering information that has suddenly become inaccessible
as a result of flash crowds. For instance, in [18] it is assumed
that the user seeks a resource that cannot be replicated, and that
the network can store state of the search to prevent duplicate
traversal along network paths. The massive distribution of pop-
ular information is the basis for work in gossip protocols [19],
[20], [21]. A limitation of these gossip-style protocols within
a flash crowd scenario is that efficient gossiping requires that
those nodes that already have the object be in the position to
determine whether this object is worth propagating further. In
contrast, in a flash crowd, it is the set of nodes that are without
the object that make such a determination.

There has been interesting theoretical work that looks at
ways to form “good” topologies for scoped searches. One
example is that of [22] which focuses on building randomized
topologies with bounds on the overlay graph’s diameter. The
procedure is somewhat more complicated and relies on a
central server at various points in the algorithm beyond mere
bootstrapping. The overlay generation method considered here
does not give any such guarantees on overlay graph diameter,
though we expect that in practice the diameter will be small. In
its current form, the only centralized component of PROOFS
is what is used to bootstrap new clients into the overlay.
However, other means such as multicast or anycast can be
used in place, removing the need for a centralized component.
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Last, there exists a small body of work that has measured or
analyzed existing P2P file sharing systems such as Gnutella
and Napster [23], [24], [25].

Last, we suspect that the recent caching approach described
in [26] will perform well in a flash-crowd environment. While
the caching overheads are unnecessary when it is known
that the item being searched for is popular, requiring explicit
caching could be used to reduce damage caused by false
alarms, where users seek unpopular objects that they mistak-
enly believe are inaccessible because of a flash crowd.

III. DESIGN DESCRIPTION

In this section, we describe the application for which the
PROOFS system was designed and describe the details of
that design. The objective of PROOFS is to provide additional
support to the existing Web/DNS infrastructure. In particular,
our goal is to provide timely delivery of web objects that are
stored at locations whose availability is compromised as a
result of a heavy request load for the objects.

A. PROOFS Design

Here we consider the architectural design of the PROOFS
system without attempting to optimize its performance in any
way whatsoever, i.e., no functionality is added beyond what is
necessary to make it functional and robust. Two components
comprise the system: the client and the bootstrap server. From
the perspective of PROOFS (without optimizations added),
clients are a set of homogeneous end-systems that form the
P2P overlay and are used to send searches. Bootstrap servers
maintain a finite-sized cache of recent users that have recently
joined the overlay, providing a means (prior to hot spot
activity) by which clients can learn about and identify other
clients in the overlay. In our current implementation (discussed
in Section V), we utilize a single bootstrap server. However,
it is easy to extend the system to one that employs several
bootstrap servers so that users can join the PROOFS system
in environments where bootstrap servers can fail.

Each PROOFS client runs two protocols, Construct-
Overlay and LocateObject. ConstructOverlay is
responsible for determining which sets of clients a client is per-
mitted to query when searching for objects. LocateObject
is the protocol that participates in searches upon the overlay
network formed by ConstructOverlay. Construct-
Overlay is in essence the passive component, running con-
tinually, whereas LocateObject is initiated by the client
only when flash crowd phenomena exist within the network.
Below, we give brief descriptions of these two protocols. These
protocols rely heavily on randomness to be both simple and
robust. All communications between clients occur at the IP
level, i.e., each client has an IP address and port that it uses
to send and receive communications.

1) ConstructOverlay: When a client wishes to partic-
ipate in the PROOFS system, the ConstructOverlay pro-
tocol first contacts a bootstrap server to obtain a preliminary
list of neighbors (an IP address:port combination). A client�

’s neighbors are the set of nodes with which it is permitted
to initiate contact. Hence, if the P2P overlay is viewed as a

graph � in which the set of clients are the nodes, then the
neighbor relation is indicated via a directed edge. Because we
use directed edges, it is possible for node � to be node

�
’s

neighbor (such that
�

can initiate contact with � ) while
�

is
not � ’s neighbor (such that � can only communicate with

�

directly by responding to
�

). This set of neighbors is the only
state maintained by the ConstructOverlay protocol that
varies with time. There is a fixed bound, � , on the maximum
number of neighbors that a client will maintain.

Clients continually perform what is called a shuffle oper-
ation. The shuffle is an exchange of a subset of neighbors
between a pair of clients and can be initiated by any client. The
client ��� that initiates a shuffle chooses a subset of neighbors
of size � that is the no larger than the minimum of the bound,
� and its current number of neighbors. It selects one neighbor,
��� from this subset and contacts that neighbor to participate in
the shuffle. �	� sends the subset of neighbors it selected with
��� removed from the subset and �
� added. If ��� accepts
��� ’s shuffle, it selects a subset of neighbors from its list of
neighbors and forwards this subset to ��� . Upon receiving each
other’s subsets of neighbors, � � and � � update their respective
neighbor sets by including the set of neighbors sent to them.
The replacement is done according to three rules:

1) No neighbor appears twice within the set.
2) A client is never its own neighbor.
3) If the size of the the neighbor set currently lies below

the bound, � , new entries to the neighbor set are added
without overwriting previous entries (until the bound
reaches � ).

4) Neighbors in the neighbor set can only be overwritten
(i.e., removed) if they were sent to the other neighbor
during the shuffle.
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(a) Before the shuffle
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(b) After the shuffle

Fig. 1. An example of a shuffle operation

A sample shuffle operation is shown in Figure 1. There,
clients are represented by numbered circles. Directed edges
indicate the neighbor relation, where an arrow pointing from

�

to � means that � is a neighbor of
�

. Neighbors are depicted
only for the darkened clients numbered 4 and 10. These nodes
start with the set of neighbors depicted in Figure 1(a) and end
with the set of neighbors depicted in Figure 1(b).

Note two important points: first, no client becomes discon-
nected as a result of a shuffle: it simply moves from being
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the neighbor of one node to being the neighbor of another.
Second, if client

�
is � ’s neighbor and � initiates a shuffle

with
�

, then after the shuffle, � is
�

’s neighbor (i.e., the edge
reverses direction).

In our current implementation, a client waits a random
amount of time sampled from an exponential distribution. A
shuffle request is only rejected by neighbors that have placed
a request to shuffle but have not yet received a response.
Upon receiving a rejection (or a timeout), a client continues
the process of choosing the next time to initiate the shuffle
from a uniform distribution. The rejection must be explicitly
acknowledged. Clients that do not respond to shuffle requests
are assumed to be inactive (i.e., are no longer part of the
overlay) and are removed from the requesting client’s neighbor
set.

Shuffling is used to produce an overlay that is “well-mixed”
in the a client’s neighbors are essentially drawn at random
from the set of all clients that participate in the overlay. There
is no attempt to optimize the overlay such that neighbors are
topologically adjacent. There is no reason to ever terminate
the shuffling operation. Once a “random” state is reached,
additional shuffles will keep the overlay in a “random” state.

2) LocateObject: The LocateObject protocol is
the protocol that attempts retrieval of the desired object by
searching among the participating clients that are connected
together by the overlay that was constructed using the Con-
structOverlay protocol. Once a client decides to use
PROOFS to retrieve an object (how such a decision can be
made is discussed in Section VI), a query is initiated at the
client. A query contains the following information:

� Object: a description of the object being searched for.
� TTL: a counter that counts the maximum number of

additional hops in the overlay that the query should
propagate if a copy of the requested object has not been
located.

� fanout: a value � that indicates to how many neighbors
a client should forward a query that it has received when
it does not have a copy of the requested object (assuming
the TTL has not expired).

� Return Address: the address of the client that initiated
the query such that once a suitable object is located, it
can be returned directly.

When a client receives a query or initiates a query from
another client, it first checks to see if it contains a copy of
the requested object. If so, it forwards the object to the return
address specified in the query. Otherwise, it decrements the
TTL of the query, and if the TTL is non-negative, randomly
selects � neighbors from its neighbor set and forwards the
query with the decremented TTL to those neighbors. Neigh-
bors that receive the query are expected to acknowledge receipt
by sending an ACK packet back to the client that forwarded
the query. If no ACK is returned from a client then another
client is selected at random and the query is instead forwarded
to that client.

If a client that initiates a query does not receive a copy
of requested object after a certain period of time, the client
assumes that no clients reached by the query had a copy of
the object and repeats the query. Currently, we increment the

TTL value by one each time a query fails until reaching a
given value.

IV. ROBUSTNESS

In this section, we evaluate the robustness of PROOFS. In
particular, we investigate the design’s robustness as a function
of the following networking phenomena:

� Overlay partitioning: Given a fixed set of clients par-
ticipating in the overlay, it is possible that the Con-
structOverlay Protocol produces partitions upon the
directed overlay graph such preventing communication
between all pairs of clients. We analytically prove that
when the overlay partitions, the types of partitions caused
are never permanent (i.e., they are automatically healed
by the protocol eventually with probability 1). We also
present simulation results to show that for reasonable
neighbor set sizes, partitions are rare occurrences and,
when they do occur, are quickly healed.

� Joins/Leaves: One expects that over time, clients will join
and leave the overlay, and that clients may leave without
warning or notification (i.e., they may simply fail). We
show via simulation that the majority of clients can still
reach a very large fraction of clients in the overlay even
when join and/or leave rates are extremely high.

� Pseudo-participants: There may exist clients that wish
to retrieve objects using the PROOFS system but wish
to limit participation assisting other clients within Lo-
cateObject. We show that, even with up to 80% of
clients limiting their participation, our design maintains
acceptable traffic levels and times for object delivery.

A. Graph Partitioning

We say that an overlay is partitioned if there exists a pair
of nodes, � � and � � in the overlay where no path exists
from � � to � � . Such an occurrence would prevent any queries
forwarded by � � from reaching � � . In our discussions below,
we will consider both partitions in the directed graph (that
takes into account the directions of the edges) as well as
partitions of the underlying undirected graph (where directions
of edges do not matter). Clearly, if the undirected graph is
partitioned, then the directed graph must be partitioned as well,
but the reverse need not be true.

Partitioning of the undirected, connected graph is of partic-
ular concern. It is easy to show that a partitioned undirected
graph cannot be repaired via shuffling. In contrast, it is easy
to show that a directed graph that is partitioned but whose
underlying undirected graph is not partitioned can be repaired
by shuffling.

There are practical complications in maintaining an undi-
rected overlay graph (where an edge permits bi-directional
communication between the nodes it connects). In particular,
when a node leaves the overlay, the nodes with which it
connected must find new neighbors that are willing to take
on new neighbors as well. This complication compels us to
use an overlay whose edges are unidirectional. Unfortunately,
it is conceivable that shuffling operations will partition the
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underlying overlay. However, we can show that any partition-
ing of the graph due to shuffling is temporary. Eventually, the
shuffling process re-connects the separated participants. We
emphasize that this theoretical result holds conclusively only
when nodes do not leave the overlay.1

The result is proved by considering the underlying undi-
rected graph (i.e., removing the directions on edges in the
overlay graph). We first prove that shuffling will not partition
such a graph, and then show that if the underlying undirected
graph is not partitioned, then eventually a path will exist from
any node � � to another node � � within the directed graph.

An undirected graph � is said to be connected if a path
exists between every pair of nodes, � � and � � .

Lemma 1: Let � be an undirected connected graph, and let
��� be the graph that is derived from � by applying an arbitrary
shuffle operation. Then ��� is an undirected connected graph.

Proof: A shuffle consists of an exchange of a pair of� nodes. This exchange can be done by first removing those
nodes that appear in both shuffle sets and then performing the
exchange one node at a time (where an exchange might be
in a single direction for the case where one node has fewer
than � nodes in its cache to swap).2 Hence, we can restrict
our attention to the case where two nodes exchange at most
one entry. It follows from induction that if the graph remains
connected after a single swap, it remains connected after all
swaps performed within the shuffle.

Let
����� �	��

���
��
 ����� be an arbitrary sequence of nodes that

forms a path in � as depicted in Figure 2(a). Since we are
considering a single swap, there are three cases to consider:

� Case 1: neither node implementing the swap lies on the
path. This means that while there may be nodes on the
path whose edges change (as a result of the swap), the
changed edges connect to the nodes implementing the
swap. Hence, no edges that form the path are changed,
so the path remains after the swap is complete.

� Case 2: one node, ��� , that implements the swap lies on
the path and the other lies off the path (call this other
node ��� ). Since the nodes that implement the swap are
connected both before and after they perform the swap
(but the direction of the edge changes within the directed
graph), two possible scenarios occur: the node on the path
swaps away no edges or swaps away one edge. As can be
seen in Figure 2(b), a path between � � and � � remains
after the swap.

� Case 3: both nodes lie on the path. It follows that if � � and
� ����� are the nodes implementing the swap, then either
� � is a neighbor of � ����� of � ����� is a neighbor of � � . In
either case, there is an edge connecting ��� and ������� in
the undirected graph. We can restrict our attention to the
alternative path

� � ��
��
����
 ����
 ��������

������
 ����� connecting
� � to ��� in � . We use this path instead and relabel all
���

 �"!$# as ����%��&� � such that �	� and ����� � are the nodes

1It is trivial to construct cases where leaving nodes can create a partition
that cannot be healed without outside intervention. Subsequent simulation
results will demonstrate that such permanent partitions are extremely rare.

2Once duplicates are removed, the swapping operation is associative, i.e.,
the order in which nodes are actually exchanged does not alter the final
outcome.

n
0

n 1 n j n j+1 n kn j−1

(a) Initial topology and no swaps

n
0

n 1 n j n j+1 n kn j−1

(b) One swap on the path

Fig. 2. A generic path where the node being swapped with is off the path.

n kn j+2n j+1n jn j−1n 1

(a) Initial topology and no swaps

n kn j+2n j+1n jn j−1n 1

(b) One swap on the path

n kn j+2n j+1n jn j−1n 1

(c) Two swaps on the path

Fig. 3. A generic path where the node being swapped with is on the path.

that implement the swap. Here, there are three cases to
consider: a) no edges on the path are swapped between
the nodes, b) � � forwards to � ��� � its connection to node
� ��% � and � ��� � forwards � � a node that lies off the path
or no node (this case also covers the case where the roles
of � � and � ��� � are reversed), and c) � � forwards node
� ��% � to � ��� � and � ��� � forwards edge � ��� � to � � . As
shown in Figure 3, for all three cases, the resulting graph
remains connected. For case b), the new path skips over
node �	� and for case c), the new path goes from �'��% � to
����� � to ��� to ����� � .

1 2 3 4 5 6

Fig. 4. An example of an unconnected directed path whose underlying
undirercted path is connected.

Theorem 1: Let � be a directed graph for which a path (in
the undirected sense) � � 
 � � 
��
���

 � � , exists connecting � � to
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� � , but where no directed path exists from � � to � � . Then
there exists a series of shuffle operations that will form the
directed path.

Proof: Consider the undirected path between � � and � � .
Some directed edges along this path point toward � � and some
point toward � � . An example is illustrated in Figure 4, where
the edge connecting node 3 to node 4 and the edge connecting
node 4 to node 5 point in the wrong direction. For any � where
node ��� � � has an edge pointing toward ��� , if ��� � � initiates a
shuffle operation with node ��� , this operation terminates with
the edge pointing from ��� to ��� � � . For instance, in Figure 4,
node 4 must initiate a shuffle operation with node 3, and node
5 must initiate a shuffle operation with node 4.

Since Lemma 1 ensures that the graph remains connected
in the undirected sense at all times, and since the proper
sequence of shuffling operations is a finite set of shuffles, with
probability one an appropriate sequence is eventually selected
that forms the directed path.

Last, we have performed simulation results that demonstrate
that when the set of clients remains fixed, there is a partition
in the directed sense less than 95% of the time, and that during
these partitions, all clients are still able to reach more than 95%
of the clients in the graph. These simulations are discussed in
the next subsection.

B. Handling Dynamic Joins and Leaves

We now evaluate via simulation the likelihood of a partition
for the case where clients dynamically join and leave the
PROOFS system. Clearly, one can construct sample paths
of joins and leaves that cause a partition in the underlying
directed graph. In each simulation, an upper bound, � , is
placed on the number of clients participating in the overlay.
These clients join and leave the overlay, each client’s join
and leave times are exponentially distributed with rates of �
and � , respectively. Each client initiates shuffles where the
time between these initiations is exponentially distributed with
mean rate 1. In these experiments, when clients leave the
overlay, there are no explicit attempts to self-heal the overlay,
i.e., edges that pointed to clients since departed subsequently
point to nowhere until the client returns. Upon their return
to the overlay, a client contacts the bootstrap server of its
arrival and obtains a new list of neighbors. We vary the
likelihood with which a client would inform the bootstrap
server of its departure from the overlay. However, we find
this announcement to have negligible impact on performance,
so results presented here are only for the case where clients
do not inform the bootstrap server of their departures.

During a simulation, we sample the status of the overlay at
an average rate of 	�
�� , with the time between samples drawn
from an exponential distribution. We collect 1200 samples and
discard the first 200 to allow the experiment time to converge
toward a steady state. By PASTA (Poisson Arrivals See
Time Averages), the fact that the times between samples are
exponentially distributed guarantees that the samples reflect
steady-state behavior.3

3This of course assumes that the system has reached steady state by the
200th sample.

During each sample, for each active client 
 (currently
joined to the overlay), we compute the fraction of other
active clients that can be reached by 
 via some path along
a sequence of directed edges within the overlay graph. We
call this quantity the reachability of 
 . During each sample,
we compute the minimum, mean, median, and maximum
reachability over all active clients. Table I lists the set of
parameters varied during experiments as well as the values
to which the different parameters were set.

TABLE I

PARAMETERS VARIED FOR PARTITION SIMULATIONS

# clients 50,100,500,1000,2000
client neighborhood size 5,10,25,50�

0.01 through 1� 0,0.01,0.1,1
shuffle size 2,5,10
bootstrap server cache 5, 10, 50, 100
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Fig. 5. 95% bounds on reachability

Figure 5 presents results for experiments in which � �
�������

clients formed the overlay, each with a bound of 25
on the size of its neighbor set. The shuffle size is set to 5
and bootstrap cache size is set to 25. Figure 5(a) plots, as
a function of � and � , the fraction of the time for which the
reachability exceeds 95% for all clients. In other words, fewer
than 1 of 20 samples should contain a client whose reachability
is lower than the indicated values. � is varied on the � -axis
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with the different curves plot the results for differing values of
� . Figure 5(b) is similar to Figure 5(a) except that the average
reachability is plotted instead of the minimum reachability.

We see at least 95% of the time, the average reachability
equals one (all clients are able to reach all other active
clients). A client with the minimum reachability within a
sample can drop as low as 20%, which means that a clients’
query can reach at most 400 of the 2000 clients participating
in the system. We emphasize that these plots are based on
the reachability of the client with lowest reachability at each
sample. A single client remains “the worst” for short periods of
time and so an individual client’s average reachability is much
higher than what is plotted here. In addition, we note that low
levels of reachability occur only in extreme cases where the
expected time for which a client remains in the system is 50
times smaller than the expected time for which the client is
exited from the system. Note that such a ratio corresponds
to a scenario in which clients that use web browsers twice a
day run the browser on average for less than 15 minutes per
sitting. This makes these high ratios unlikely in practice. We
therefore expect under realistic conditions, reachability will be
high for all active clients at all times. We omit the plots for
the case where � � �

(clients join and never leave) since the
curves simply overlap with the curves plotted for � � ��� � 	 . In
other words, in our experiments with � � �

, client reachability
dipped below 1 less than 5% of the time, and never dipped
below 0.95.

We have also evaluated the impact that neighborhood size
has on minimum reachability. Due to lack of space, we
simply summarize our finding that increasing neighborhood
size greatly increases the minimum reachability in the overlay
graph when � ��� � .

Note that we have examined the algorithm in an environ-
ment where we make no explicit attempts to repair partitions.
In practice, it would be simple if desired to add an additional
mechanism to explicitly perform repairs. For instance, a client,
upon detecting an unresponsive neighbor could remove the
neighbor from its neighbor set and shuffle with an active
neighbor to replenish its neighbor set. On the rare occasions
that a client finds itself partitioned or unable to increase its
neighborhood to the desired size by shuffling can contact the
bootstrap server to obtain a fresh set of neighbors. Such types
of mechanisms would reduce the likelihood of partitioning,
improving reachability, if deemed necessary.

C. Non-cooperating clients

We now turn our attention to evaluating the robustness of
PROOFS as we vary the level of participation of clients within
protocol LocateObject. Because PROOFS is designed to
run on users’ desktop machines, not all clients are necessarily
willing to fully participate. In some cases, clients may even at-
tempt to deceive others about their levels/ability to participate
[23]. In fact, the ability to adjust the level of participation is a
feature in file-sharing systems.We introduce three basic means
by which a client can limit its participation in PROOFS:

� Query-only: a query-only client will act as though it has
not received a copy of the object. However, the client will

forward queries further in the normal fashion (forwarding
the query to � neighbors after decrementing the TTL as
long as the TTL is larger than 0.)

� Tunneling: upon receiving a query, a tunneling client
selects a single neighbor and forwards the query to the
neighbor with a decremented TTL.4

� Mute: a mute client drops all queries it receives without
notifying other clients of this behavior. We assume that
other clients are not aware that a given client is mute
and therefore no action is taken to compensate for mute
clients.

Using discrete-event simulation, we evaluate the perfor-
mance of PROOFS as a function of the number of messages
transmitted to each client5 and the average time taken for a
client to receive the requested object. In these simulations,
time is measured in hops: where each transmission between a
pair of clients requires a single time unit. A client can transmit
an unlimited number of queries to neighboring clients within
the same time unit.

Following the lead of [3], we evaluate these measures of
performance using two different client arrival processes that
determine the proximity in time with which clients become
interested in the “hot” object and initiate queries. In the
isolated arrival process, only one client is interested at any
given time. A client’s search for the object must complete
before the next client’s search commences. In the joined
arrival process, the times at which client searches are initiated
follow the distribution of a branching process. Here, each
client that has not already initiated its search by time � initiates
its search at time � with probability � ��� � �	� 
���
 , where � � and
� � are constants and ������� is the number of clients that had
been initiated by time unit ��� 	 . This emulates a scenario
where a client self-initializes with probability � � or is “told”
about the object by each other client that has already started its
search independently with probability � � . In our experiments,
we have arbitrarily selected � � � ��� ��� 	 and � � � ��� � 	 .

We begin by considering the fraction of searches that fail to
locate a copy of the desired object. As the fraction of clients
that are willing to forward queries or return copies of objects
decreases, the likelihood of a search failing increases. Figures
6 and 7 plot results of simulations using the isolated arrival
process. In both figures, the � -axis indicates the fraction of
clients that are non-participants. The type of non-participants
(query-only, tunneling, or mute) is indicated by the different
bars in Figure 6 and different curves in Figure 7. When
� � �

, all clients are “behaving” following the basic rules
of the protocol. Here, the overlay used to generate these plots
contains 	 ����� clients, each with a neighbor set of size

���
.

The fanout, � , used here is
�
. Each point plotted is the the

average of � ��� runs. When shown, 95% confidence intervals
are generated from 20 samples that average 15 data points at a
time (such that each sample is drawn from a distribution that
is approximately normal).

4Our original intention was to not decrement the TTL but this created large
bandwidth overheads as the number of limited-participation clients was large.

5A subtle point should be made here that the average number of queries
received equals the average number of queries sent (since every query that
leaves a client must arrive at another client.
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Fig. 6. Non-cooperation search completion rates: Isolated arrival process

Figure 6 illustrates the fraction of clients that locate a
document as a function of the fraction of non-cooperative
clients. Those clients who limit their participation all do so in
an identical fashion: the different curves indicate the type. We
see that even when the fraction of non-cooperating clients is as
high as 0.5, all clients’ queries are successful when the non-
cooperation type is query-only or tunneling. When the type
is mute, a client’s query is successful 99.5% of the time. We
also observe that the fraction of clients that find the document
does not degrade as the fraction of non-cooperating clients
increases further with the exception of the mute type of non-
cooperation. There, fewer than 20% of searches fail to locate
the object.

Figure 7 plots the average number of messages per client
and average time units required using the isolated arrival
process. We emphasize that this is the expected number of
messages that each client expects to receive so that the desired
object can be delivered to all 999 other clients (including
itself) to obtain a copy of the object. It is also the expected
number of messages that each client must send for this
purpose.6 such From Figure 7(a) we observe that when the
fraction of non-cooperating clients is 0.5, the average number
of messages does not even double. In fact, for mute and
tunneling types, levels of traffic increase by only 50%. We
see that types tunneling and mute have less of an impact on
traffic than does type query-only. We observe large confidence
intervals at � � �����

for the mute type. These are a result of
the small number of searches that do not locate the object
because no path exists through non-mute clients to the object.
This creates a small set of searches that generate significantly
larger levels of traffic.

Figure 7(b) plots the average number of time units taken
for a client to retrieve the object. We observe here that types
query-only and tunneling cause minimal increases in search

6This seems somewhat counter-intuitive at first, since a client typically
sends � messages for each message received. However, there are occasions
when the TTL reaches 0 at the client such that it forwards nothing when it
receives a message. The observation is proved by noting that each message
sent by a client is received by another.
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Fig. 7. Non-cooperation overhead: Isolated arrival process

times. The mute type causes a minimal increase when the
fraction non-cooperating clients falls below 0.6. However, the
time increases dramatically once this fraction is passed.

We run similar experiments for the case where clients
initiated queries according to the joined arrival process. There,
we observe similar trends in both the average number of
messages and the average number of time units. The only
difference is that the averages are slightly (no more than 20%)
higher than for the isolated arrival process.
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Next we examine the effect of varying the size of the
neighbor set. The parameters for the number of clients and
fanout remain similar to those in the previous experiments.
Figure 8 illustrates the fraction of clients that are able to locate
the document. The different bars plot these values for various
fractions of mute non-cooperating clients and various fanouts.
We find when fanout � � �

, increasing the neighbor set size
does little to improve the likelihood of a search succeeding
when the fraction of non-cooperative clients is large. However,
such an increase does yield significant improvements when
the fanout is 5: increasing the neighbor set size from 	 � to���

changes the fraction of searches that succeed from
��� ���

to��� ���
when

�����
of the clients are non-cooperative.

Our findings indicate that a fanout of � � �
is sufficient

to handle overlays in which large fractions of client are non-
cooperative of type mute. With query-only, and tunneling type
of non-cooperation, we find that the fraction of clients that are
able to locate the object is near 	 ����� even with a fanout as
low as � � �

and half of the clients are non-cooperative.
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Fig. 9. Non-cooperation overhead: Isolated arrival process

Figure 9 illustrates the average number of messages per
client and average number of time units for the same set of
simulations used to plot Figure 8. We observe that increasing
neighbor set size significantly reduces the messages and the
time required to locate the document for smaller fanouts and
larger fractions of non-cooperative clients. Again, we observe
that a fanout of

�
upon an overlay in which clients’ neighbor

sets are size
� �

keeps the average number messages received

per client small (around
���

), and the time required less than
�

hops. Even a neighbor set size as small as 	 � is sufficient to
locate the document within

�
hops when half the clients are

non-cooperative. We observe similar trends to that explored in
Figure 7 with query-only and tunneling non-participants.

In summary, these simulation results indicate that PROOFS
is robust in overlays even when the fraction of clients that are
non-cooperative is 0.5.

V. EXPERIMENTS

In this section, we present results of our use of an ex-
perimental prototype within a wide-area network setting. Our
experimental testbed consists of a variety of machines gath-
ered at the following academic institutions around the globe:
MIT(MA), USC(CA), Columbia (NY), UCL (London), Geor-
giaTech (GA), UKentucky (KY), NTUA (Athens, Greece),
UNC (NC), CMU (PA), UCSD (CA), UDelaware (DE),
UMass (MA), UWisconsin (WI), UoA(Athens, Greece), UMN
(Minnesota), and University of Maryland (MD). The hosts
yielded a heterogeneous mix of operating systems (mostly
Linux and Solaris), bandwidth capabilities, processor speeds
and memories.

0

50

100

150

200

250

0 100 200 300 400 500 600

N
um

be
r 

of
 L

oc
at

e 
R

eq
ue

st
s

Τ (in msec)

Average Locate Requests per client
Maximum Locate Requests

(a) Traffic Levels

0

5000

10000

15000

20000

0 100 200 300 400 500 600

S
ea

rc
h 

tim
e 

(in
 m

se
c)

Τ (in msec)

Average Search Time per client
Maximum Search Time

(b) Delivery Time

Fig. 10. Experiments with 180 clients, simultaneous searches

Our goal was to examine PROOFS within a wide scale
experiment containing thousands of participating clients. How-
ever, doing so would have overloaded the small number of
distributed machines to which we had access. To generate
more participants, multiple clients (between 5 and 15) were
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assigned to a single machine as separate processes. Since a
client’s neighbors are assigned randomly via the shuffling pro-
cess, the selection of neighbors is not biased by their network
or physical proximity. Hence, the only effect that this artificial
proximity has on the experiments is that approximately 	�
 � th
of the time, the end-to-end transmission delay between pairs
is smaller than would be expected in practice, where � is the
number of hosts.

Our prototype is a multi-threaded Java executable that
uses TCP sockets to form and maintain connections between
neighbors in the overlay. We selected Java because of its
inherent portability to all the machines, though the executable
code is slower than what can be achieved by coding in C. By
using TCP sockets, we did not need to concern ourselves with
handling lost transmissions within the network. When a client
shuffles a neighbor away, it closes the TCP socket that leads
to the departed neighbor. When a client is informed of a new
neighbor (during a shuffle) it then initiates a TCP connection
with that neighbor. We also implemented a bootstrap server
to provide the clients with a valid sets of neighbors during
their startup. In all experiments, the times at which each client
initiates shuffle operations are exponentially distributed with
an expected time of two minutes between shuffle initiations.
We let the shuffling proceed for a half hour before initiating
our experiments to give the overlay time to “randomize” itself.

Figure 10 plots results of 8 experiments using an overlay
consisting of 180 clients with a neighbor set size of 15. In each
experiment, a single client starts with a copy of the object.
All other clients simultaneously search for that object using a
fanout � � �

. Figure 10(a) plots, for each experiment, the
average number of query requests received by each client,
as well as the maximum number of requests received over
all clients. On the � -axis, we vary � , where a client waits

��� milliseconds after initiating a query with TTL � before
initiating its next query (the maximum values are shifted
slightly to the right to more easily distinguish between average
and maximum points). Figure 10(b) plots the corresponding
average and maximum times taken from the time that a client’s
search is initiated to the first time that the client retrieves the
object (since multiple copies can be returned due to the parallel
nature of the search).

We see that by setting � to small values, the expected
time to delivery is reduced. However, there can be substantial
increases in traffic levels due to premature transmission of
queries (before previous queries have had a chance to com-
plete). We see that for values of � ! � ��� , average traffic
levels are approximately the same, with each client receiving
on average fewer than 25 queries to allow all clients to obtain
the content. This follows from our observation that typical
response times to queries varied between 100ms and 350ms.
The results indicate that a client should give ample time for a
query to complete its search before starting another.

Figure 11 plots results of between 10 and 25 experiments
for each 50 ms increment of � using a similar setup as before
except that here, only 87 clients participate. The conclusions
we draw from these plots are roughly the same. We note that
traffic levels and retrieval times are roughly the same as for the
180 client case. This indicates that the number of requests and
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Fig. 11. Experiments with 80 clients, simultaneous searches

the retrieval time does indeed grow slowly with the number
of clients participating in the system.

These experiments demonstrate that (admittedly, on a
smaller scale), PROOFS can retrieve popular objects in an
efficient fashion. The time between queries should be no less
than 250 msec, giving ample time for the large majority of
queries to reach their intended destinations.

VI. DISCUSSION

The appeal of PROOFS is the simplicity, scalability, and
robustness of its basic architecture. The fact that often nodes
receive redundant copies of queries does increase the levels
of traffic it adds to the network. However, this redundancy
proves to be helpful in naturally prevent partitions and allows
the system to operate effectively even when a large fraction
of clients limit their participation.

While we have demonstrated PROOFS’ ability to scalably
and robustly deliver objects under heavy demand, we have not
evaluated the potential damages to the network via misuse or
intentional abuse. PROOFS’ scalability relies on the fact that
the object a client searches for is also being searched for by
many other clients in the network. In practice, it is necessary
to limit the amount of flooding caused by searches that are
not looking for popular content. The impact of such flooding
is sufficiently limited by introducing caching mechanisms,
such as those recently described in [26]. However, such
caching does require users to cache objects that they have not



JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. Y, ZZZ 11

specifically requested. A second option is to place limits on the
rate at which clients are willing to service queries. If all clients
bound the rate at which they process queries by some fixed � ,
then each client can only inject queries into the network at a
maximum rate of ��� (the rate can be lower due to queries
for which a copy of the object can be returned). Another
way is to place limits on the maximum TTLs for queries.
Large TTLs are required when few clients are searching for
an object so that their queries cover the majority of nodes
in the overlay. In contrast, when numerous clients search for
a common object, repeated searches with small TTLs will
spread the objects around the overlay quickly as a result of the
overlay’s randomly connected structure. Hence, the number
of small scoped searches that find the object is expected to
grow exponentially with time. This rate limiting reduces the
usefulness of PROOFS under non-flash crowd conditions, but
we expect will not significantly affect performance during
actual flash crowds.

We are currently actively investigating mechanisms to pre-
vent denial of service attacks through overlay networks. Our
technique compares the rates of incoming traffic from different
neighbors, taking into account the “structure” of the overlay.
For a PROOFS-like overlay, two neighbors are expected to
send queries to a node at roughly the same rate, so that when
one neighbor sends queries at a much higher rate than the
other, this is likely the result of a DoS attack through that
first neighbor. Such an approach not only shows promise in
undirected search networks such as that used by PROOFS, but
we are also looking at means to implement similar protection
in directed search networks proposed in [9], [10], [11], [12],
[13].

Our simulations have assumed a homogeneous collection
of participants. One possible future direction is to explore
the performance of PROOFS where the various participants
have differing bandwidth capabilities and differing join/leave
patterns.

We have demonstrated that PROOFS can provide robust
performance in delivering hot objects as long as some node
in the overlay contains a copy of the sought after object.
PROOFS can incur significant overheads when used to search
for an object that is not “hot” or is unavailable within the P2P
network. For the former case, we are investigating mechanisms
that can be used to predict the “heat” of an object. The latter
remains an open problem, not only in PROOFS, but in all P2P
search protocols.

VII. CONCLUSION

We have presented PROOFS, a system designed to deliver
objects whose servers of origins are experiencing flash crowd
conditions. The system uses overlays that are formed via a
distributed shuffling procedure such that neighbors are selected
at random. Randomized, scoped, flooding searches are then
used by clients upon the overlay to locate the object that cannot
be retrieved from the overwhelmed server. We have shown via
a mix of theoretical results, simulation, and experimentation
that by relying on randomness, PROOFS can achieve low
latency delivery utilizing modest traffic levels, even when

membership to the overlay changes dynamically with time and
when there exist members that limit their participation in the
system.
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