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Abstract—The quality of wireless links is inherently dynamic,
and this often makes the measurements of link delivery prob-
abilities inaccurate over short timescales. We present Stable
Opportunistic Routing (SOR), which improves unicast throughput
for wireless mesh routing in the presence of inaccurate link-level
measurements. In essence, SOR integrates two key features of
prior approaches: (i) nodes trigger or suppress transmissions
by inferring the actual reception of packets by neighboring
nodes through channel overhearing, and (ii) nodes use network
coding to avoid redundant transmissions. In addition, SOR is
less dependent on accurate timing estimates or measured loss
rates than prior approaches. Our stance is to argue that by
carefully incorporating prior approaches into the design space
of SOR, we can make opportunistic routing more robust toward
link-level measurement errors, a practical issue in wireless mesh
routing. Using nsclick simulation, we show that SOR has higher
throughput than existing shortest-path and opportunistic routing
protocols in large-scale networks, and the performance gain is
more prominent when link-level measurements are erroneous.

Index Terms—wireless mesh networks, opportunistic routing,
performance evaluation

I. INTRODUCTION
Empirical studies [1], [22], [24] show that wireless links are

inherently dynamic, meaning that their delivery probabilities
heavily fluctuate on millisecond timescales. Link quality can
further be distorted by background interference and external
sources (e.g., microwave [24]). The dynamic nature of wire-
less links complicates the design of wireless mesh routing
protocols, especially when routing decisions are based on the
assumption of stable channel losses over small timescales.
For instance, routing protocols such as shortest-path routing

(e.g., ETX [6] and WCETT [7]) and opportunistic routing
(e.g., ExOR [4] and MORE [5]) utilize periodic link-level
probe measurements to infer existing channel conditions. Mea-
surement results are periodically taken over large timescales
(e.g., every 90s [6]) and distributed via link-state flooding to
the entire network, so that all nodes can agree upon a routing
decision that gives the highest possible throughput for data
transfer. However, the overhead of link-state flooding reduces
the frequency with which such probes can be issued. Thus, the
estimates of link delivery probabilities are often inaccurate
for the shorter timescales over which accurate estimates are
needed; this inaccuracy leads to degraded throughput.
In this paper, we design a robust wireless mesh routing

protocol called Stable Opportunistic Routing (SOR) that main-
tains high throughput in environments with dynamic channel
loss conditions, which lead to inaccurate link-level measure-
ments. In SOR, nodes trigger or suppress packet transmissions
based on any packets they overhear being sent by neighboring

nodes, and in addition, use network coding [2] to avoid
transmitting redundant packets. Since the on-the-fly decision
of transmitting packets is purely based on the actual reception
of packets by neighboring nodes, SOR is less dependent on
accurate timing estimates or measured loss rates as in prior
approaches (see Section II). This makes SOR more resilient
even though the measured link delivery probabilities deviate
from the actual values. Also, SOR runs atop 802.11 MAC as a
layer 2.5 protocol and enables us to deploy it in off-the-shelf
wireless cards.
In essence, SOR combines the key features of ExOR and

MORE: coordinating transmissions of nodes through channel
overhearing as in ExOR, and randomly mixing packets using
network coding as in MORE. While ExOR and MORE in-
dividually outperform shortest-path routing, ExOR is known
to poorly exploit spatial reuse due to its stringent scheduling
(see [5], [10]), and MORE is vulnerable to the deviation
of link-level measurements due to its credit-based forward-
ing approach (see our analysis in Section III-B). We argue
that by carefully combining their key components, SOR not
only removes the limitations of ExOR and MORE, but also
becomes fundamentally robust toward inaccurate link-level
measurements. In summary, our contributions include:

∙ We analytically show that inaccurate estimates of link de-
livery probabilities can significantly degrade the through-
put of current routing protocols.

∙ We address the design challenges of integrating ExOR
and MORE into SOR.

∙ Using nsclick [23] simulation, we show that SOR outper-
forms MORE (opportunistic routing) and ETX (shortest-
path routing) in various scenarios. For instance, in large-
scale topologies with accurate measurements, SOR’s
throughput is up to 1.5× and 2.1× over MORE and ETX,
respectively. Also, when the measured link delivery prob-
abilities deviate from the actual values, SOR achieves, at
best, 8.5× and 2.9× throughput gains over MORE and
ETX, respectively.

The paper proceeds as follows. Section II reviews current
opportunistic routing protocols. Section III motivates the need
of robust mesh routing toward dynamic wireless links. Sec-
tion IV describes the design of SOR. Section V reports results
from nsclick simulation. Finally, Section VI concludes.

II. RELATED WORK

Opportunistic routing has been proposed to improve
throughput over shortest-path routing protocols such as ETX
[6] and WCETT [7] by exploiting the opportunistic reception
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of forwarding nodes. This section presents the design limi-
tations of existing opportunistic routing protocols, especially
under the inherently varying channel conditions.
ExOR [4] is the first opportunistic routing implementation

for wireless mesh networks. Its goal is to coordinate transmis-
sions among multiple forwarders. A sender broadcasts a data
packet to multiple forwarders, among which the receiver that
is “closest” to the destination actually forwards the packet.
To avoid redundant transmissions, ExOR imposes a strict
timing order in which forwarders need to await predetermined
packet-time estimates before accessing the channel. Accurate
packet-time estimates are hard to determine, and the strict
timing order prevents nodes from exploiting spatial reuse [5].
Extensions of ExOR include SOAR [25] and XCOR [16],
but they still require forwarding timers to strictly schedule
transmissions of nodes as in ExOR.
MORE [5] addresses ExOR’s limitation of strictly schedul-

ing node transmissions by using network coding [2]. Given
a batch of packets, a source continuously generates randomly
coded packets. Each forwarder, upon receiving a coded packet,
is given some credits, which will be consumed for each packet
to be forwarded. While MORE eliminates the overhead of
node coordination as in ExOR, the allocation of credits is
computed purely based on previously measured link delivery
probabilities. If the link-level measurements are inaccurate or
cannot adapt quickly enough to the current network condi-
tion, forwarders may receive too few (or too many) credits,
leading to insufficient (or overloaded) transmissions and hence
degraded throughput. Extensions of MORE include MC2 [10]
and CodeOR [20], yet they still use the previously measured
link delivery probabilities to compute the expected number of
packets to be forwarded.

III. MOTIVATION

In this section, we motivate the need of a robust wireless
mesh routing protocol toward inaccurate link-level measure-
ments. Our major focus is to show via mathematical analysis
that the measurement errors of link delivery probabilities can
degrade existing routing protocols.

A. Testbed Measurements
We first demonstrate via testbed measurements that wireless

links are dynamic and their link delivery probabilities fluctuate
on millisecond timescales. Figure 1 depicts our mesh network
testbed. The testbed comprises nine nodes, eight of which are
located on the same floor, and node 8 is located one floor above
the room where node 5 resides. Each mesh node is installed
with an Atheros wireless card and the Madwifi driver [21].
We configure nodes to operate in the 802.11b ad-hoc mode
using channel 1 (2.412GHz), transmission power 11dbm, and
the fixed bit rate 11Mbps.
Each node in turn broadcasts 1.4-KB packets as fast as

possible for 120s, and we collect the statistics at all other
receiver nodes before another node broadcasts packets. The
1.4-KB size is close to that of the data packets when we
evaluate the routing protocols (see Section V). Hence, our test
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Fig. 1. Our wireless mesh testbed.
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Fig. 2. Means versus standard devi-
ations of link delivery probabilities.

serves as an indicator for the instantaneous behavior when the
routing protocols transfer data.
Figure 2 shows the scatter plot of the means and standard

deviations of the link delivery probabilities of all 72 links
in our testbed. Each data point corresponds to a link and
is computed from the 200-ms samples over the 120-s span.
We see that links with intermediate delivery probabilities
experience higher standard deviations. Note that links with
intermediate delivery probabilities are not uncommon, for
example, as shown in Roofnet experiments [1]. We also plot
the link delivery probabilities versus time for some specific
links in Figure 3. We observe that the higher-loss links 0 → 4
and 8 → 1 (respectively with average delivery probabilities
0.56 and 0.16) have more fluctuating delivery probabilities
when compared to the lower-loss link 1 → 3 (with average
delivery probability 0.99). Also, the delivery probability of
link 0 → 4 occasionally drops to zero.
We observe the fluctuations of link delivery probabilities on

small timescales, and the results conform to the measurements
in other testbeds [1], [22], [24]. In addition, [24] shows that
link delivery probabilities can be significantly reduced by
nearby energy sources such as microwave.
Does rate adaptation help? To handle the variance of link

delivery probabilities, one possible solution is rate adaptation,
such that nodes with dynamic links switch to lower transmis-
sion rates for more stable link quality. However, deploying rate
adaption poses some open design issues. First, opportunistic
routing protocols such as ExOR and MORE use the broadcast
mode for transmissions and disable link-layer ARQs, which
are needed by today’s rate adaptation implementation for link
quality inference. In addition, a node transmitting at a low rate
can hurt the throughput of neighboring nodes that transmit at
high rates (i.e., the performance anomaly problem [11]), and
the overall throughput might not improve. While exploring
the advantages of rate adaptation in opportunistic routing is
important, it is still essential for a routing protocol itself to be
robust toward link quality fluctuations.

B. Mathematical Analysis

Given the link quality fluctuations on small timescales, the
estimates of link delivery probabilities may become inaccurate
and deviate from the actual delivery probabilities by the
time data forwarding begins. We now show via mathematical
analysis how the shortest-path routing protocol ETX and the
opportunistic routing protocol MORE are sensitive to the
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Fig. 3. Delivery probability versus time for different links. Link 0 → 4 (left) and link 8 → 1 (middle) are more dynamic than link 1 → 3 (right).
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Fig. 4. Topologies in Mathematical Analysis.

measurements of link delivery probabilities and have their
throughput degraded.
Let !! and !! + "! be the measured and actual link delivery

probabilities of link #, and hence "! denotes the error in
measurements. We assume that packet losses are independent.
Due to the probabilistic nature of a link, the actual number
of transmissions to deliver a packet across a link varies for
different packets. Thus, we assume that our results are derived
in the expected sense, i.e., a node always makes the expected
number of transmissions to deliver a packet across a link.
To demonstrate our major results, we consider two partic-

ular loss models as motivating examples. We also resort to
simulation in Section V to evaluate more general settings.
1) Impact of Number of Forwarders when "! ∼ $(−%, %):

We first show how the number of transmissions needed to
deliver a packet across a link varies with the number of
forwarders (see Figure 4(a)). We assume that "! follows a uni-
form distribution $(−%, %) for some % > 0. This captures the
scenario where link delivery probabilities, which are sampled
from periodic probing, contain statistical errors.
Note that MORE delivers each packet to multiple forwarders

(say, across ( links #1, #2, ⋅ ⋅ ⋅ , #"), and ETX delivers each
packet to a single forwarder (say, across link #1) (see Fig-
ure 4(a)). The number of transmissions required by MORE to
deliver a packet to at least one of the ( forwarders is

) (() =
[
1−

∏"
#=1(1− (!!! + "!!))

]−1
,

where ETX arises as a special case with ( = 1.
We now use numerical simulation to see how ) (() varies

when "! ∼ $(−%, %) for some % > 0. We fix !!! = 0.6 for all
##. Then for the given ( and %, we randomly generate 1,000 sets
of "!! ’s and compute the average of +[) (()]. Figure 5 plots
) (() versus %. We note that +[) (1)] increases with %, even
though "! has a zero mean. To explain this counter-intuitive
observation, we can in fact show that

+[) (1)] = +[
1

!!1 + "!1
] =

1

2%
log

!!1 + %

!!1 − %
,

which is an increasing function of %. This means ETX’s
throughput decreases with higher deviations of measurement
errors, even though the errors have a zero mean. However, the
decrease in throughput is mitigated with multiple forwarders
(i.e., with a higher value of (), as in opportunistic routing.

2) Impact of Path Length when "! < 0: We now show
how the number of transmissions needed to deliver a packet
from source to destination varies with the path length (see
Figure 4(b)). We assume that "! < 0 for all #. This captures
the case where a network suffers from background interference
and the actual link delivery probabilities are less than the
measured values.
We focus on MORE, whose number of transmissions of a

node - depends on its allocated credits (denoted by .#). Let
)# be the expected number of transmissions made by node -
to deliver a packet to the destination, and /# be the expected
number of packets that node - needs to receive so as to make )#

transmissions. Note that .#, /#, and )# are related as follows:

)# = /# × .#.

Consider a line topology shown in Figure 4(b), in which
there is a single flow with source 0 and destination 0, and node
- forwards packets to node - + 1 through link ##. In general,
MORE uses multiple forwarders. In this case, each node in
Figure 4(b) denotes an aggregate of multiple forwarders, and
the link delivery probability is the probability to deliver a
packet to at least one forwarder. Since !!! is the measured
link delivery probability of link ##, one can show that node -
has credits .# = 1/!!! for all -.
We now analyze how )0 varies with the path length 0,

given that "! < 0. We compute )# in descending order of -.
For node 0 − 1 to deliver a packet to destination 0, it needs
)$−1 = (!!"−1+"!"−1)

−1 transmissions. To make )$−1 trans-
missions, node 0−1 needs to receive /$−1 = )$−1/.$−1 =
!!"−1/(!!"−1 + "!"−1) packets. This requires node 0 − 2,
the upstream node of node 0 − 1, to transmit )$−2 =
/$−1/(!!"−2+"!"−2) = !!"−1/[(!!"−2+"!"−2)(!!"−1+"!"−1)]
packets. By induction, the expected number of transmissions
of source 0 is

)0 =

∏$−1
#=1 !!!∏$−1

#=0 (!!! + "!!)
.

Figure 6 shows )0 versus % for different values of 0, where
we fix !!! = 0.8 and "!! = −% for some % > 0. When
"! < 0 for all #, the number of transmissions by source 0
to deliver a packet to the destination increases exponentially
with path length 0. The intuitive reason is that MORE is
built upon end-to-end recovery, as the source needs to push
forward enough credits so as to recover the packet loss in
any intermediate link. Thus, although MORE eliminates node
coordination (i.e., no channel overhearing is needed), its credit-
based forwarding approach is inherently sensitive to the slight
degradations of link delivery probabilities, and this leads to a
dramatic decrease in throughput. We use simulation to confirm
this limitation for general networks in Section V.
To make MORE, or opportunistic routing in general, robust

toward inaccurate link-level measurements, we propose to use
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hop-by-hop recovery, in which intermediate nodes can trigger
retransmissions if they infer that their forwarded packets do
not reach their downstream neighbors. Hop-by-hop recovery
is also used in ExOR, yet ExOR relies on accurate time
estimates to coordinate node transmissions, thereby reducing
spatial reuse. Thus, it is important to carefully implement node
coordination (as in ExOR) while maximizing spatial reuse (as
in MORE). Section IV addresses this key design challenge.

IV. SOR DESIGN
Current shortest-path and opportunistic routing protocols

make routing decisions based on the link delivery probabilities
obtained from the probe measurements over large timescales
(e.g., every 90s [6]). However, as shown in Section III, the
measurements may deviate from the actual delivery probabili-
ties over short timescales (e.g., in milliseconds). In this section,
we propose SOR, an opportunistic routing protocol that seeks
to be robust toward inaccurate link-level measurements. In
a nutshell, SOR nodes infer the actual reception of packets
by neighboring nodes (as in ExOR), and dynamically trigger
transmissions if non-redundant packets can be forwarded, or
suppress transmissions otherwise. Also, SOR uses network
coding to further avoid redundant transmissions (as in MORE).

A. Assumptions
The assumptions of SOR are built upon ExOR and MORE.

We assume that SOR is deployed under centralized adminis-
tration, where nodes are identified by unique node IDs.
SOR transmits packets on a per-batch basis, such that each

batch contains a fixed number of packets and SOR attempts
reliable delivery for all batches. Thus, we assume that SOR
is only used by bulk data transfer applications so that it
can accumulate packets into batches. Like ExOR and MORE,
which are batch-based, we do not expect SOR to be used in
interactive or short data transfer applications. As addressed by
ExOR’s authors [3], opportunistic routing is also expected to
perform poorly when being layered under TCP due to packet
reordering and TCP’s rate control mechanisms.
Since we only consider bulk data transfer, our objective is

to improve end-to-end throughput. Other performance metrics
such as transfer delay are not our emphasis.
SOR’s benefits come from the assumption that nodes can

infer the actual reception of packets by neighboring nodes.
We assume that the network is dense enough so that each
node is within the transmission range of multiple neighboring
nodes and can overhear their transmissions. Having a dense
network is also necessary for opportunistic routing schemes

like ExOR and MORE, so that nodes can exploit opportunistic
transmissions along multiple routes.
We also assume that link delivery probabilities are indepen-

dent, which is a valid approximation in practice [1], [24].

B. Design Intuition of SOR

SOR uses randomized network coding [12], i.e., each sender
node selects uniformly at random a set of code coefficients
over a finite field and forms a linear combination of the
current batch of data packets that are composed of either the
native (i.e., original) packets (for the source) or the encoded
packets that have thus far been received (for forwarders). The
destination then decodes the received coded packets to recover
original data using Gaussian elimination.
As shown in [12], the probability that these randomly coded

packets are innovative (i.e., linearly independent) is very high.
Suppose that the source (the originator of native packets)
generates 2 randomly encoded packets from a batch, where
2 is equal to or slightly larger than the batch size. Upon
receiving innovative packets, each node should re-encode them
and transmit new innovative packets. It stops transmissions
and frees the channel until its transmitted packets are received
by nodes “closer” to the destination. When the destination
receives 2 innovative packets, it can recover the original data
with a very high probability.
To know when to trigger and suppress transmissions, a

SOR node needs to infer what packets its neighboring nodes
actually receive by overhearing their forwarded packets. How-
ever, inferring the reception of any encoded packet is not
straightforward, since when a forwarder forwards any packet,
this forwarded packet is randomly mixed with the packets
received by the forwarder. By looking at the payload or the
code coefficients stored in the forwarded packet, one cannot
tell which native packets contribute to the forwarded packet.
This implies that the forwarded packet needs to include some
indicative information to tell a node whether its transmitted
packets have been correctly received by its neighbors. In view
of this, we propose to associate each forwarded packet with a
packet sequence number (PSN). In traditional routing where no
coding is used, a sequence number serves as a unique identifier
of a packet. However, in SOR where network coding is used,
a PSN has a different definition, i.e., a PSN specifies one of
the native packets that contributes to the encoded packet. We
will later explain the assignment of PSNs in more detail.
To understand SOR, we analyze how a node processes a

single batch of data packets so as to have the batch reliably
delivered to the destination. Before forwarding any data, all
nodes agree on the set of forwarders (Section IV-C). When the
source has a new batch of data packets, it starts transmissions,
while all other nodes await packets from upstream neighbors.
Upon receiving enough packets, a node starts forwarding the
batch (Section IV-D). It triggers or suppresses its transmissions
for the batch based on the PSNs tagged in the packets
being overheard (Section IV-E). A node stops transmitting the
current batch when it is acknowledged (Section IV-F).
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C. Preparing for Transmissions

1) Link-level Measurements: Each SOR node periodically
measures link delivery probabilities via periodic link-level
probes. In actual deployment of SOR, link-state information
is distributed to all nodes through periodic link-state flooding.
However, link-state flooding incurs communication overhead,
which also exists in current routing protocols (e.g., [4], [5], [6],
[7]). Thus, without hurting the fairness of our routing protocol
comparisons, we neglect this overhead in our evaluation.
Instead, we assume that the link-state information is available
to all nodes before they forward data.
The link-level estimates assist SOR to make the best possi-

ble guess of the forwarders that can bring packets “closer”
to the destination (see Section IV-C2) and to initiate the
transmission of a batch (see Section IV-D). However, the actual
link delivery probabilities vary over short timescales. Thus,
nodes must decide on the fly when to trigger or suppress trans-
missions of individual packets based on the actual reception
of neighboring nodes, and this is the key motivation of SOR.

2) Forwarder Selection: Like ExOR and MORE, we as-
sume that for a given destination, the forwarding priorities of
all nodes are prioritized from highest to lowest based on the
ascending order of the ETX metric [6] (the expected number
of transmissions to deliver a packet to the destination). Higher-
priority nodes are the more preferred forwarders. We can also
replace ETX with other opportunistic-routing metrics (e.g., [8],
[29]) for a higher throughput gain, yet we choose ETX as a
base case for our evaluation. To avoid medium contention of
too many forwarders, we assume that each sender has at most
3 forwarders. Here, we set 3 = 8.

3) Packet Header: SOR has two types of packets: data
and ACK. A data packet contains the encoded data, while
an ACK packet is for the destination to acknowledge the
source the receipt of the current batch of data packets (see
Section IV-F). For each data packet, a packet header (shown
in Figure 7) is included between the MAC header and the
encoded data payload. The Type field distinguishes data and
ACK packets. Src and Dst are the node IDs of the source and
the destination of a flow, respectively, and the Sender field is
the node ID of the current sender of the data packet. BatchID
identifies the batch that the data packet belongs to. ACKMap is
a bitmap that acknowledges lower-priority nodes which PSNs
have been received (see Section IV-E). CodeVector is the list of
coefficients encoded for a data packet. NumFwder specifies the
number of forwarders specified in the ForwarderList. Suppose
that the network contains at most 256 nodes and that we
apply network coding on a batch size 32 over the Galois Field
GF(28). Then we can compact each node ID and each code
coefficient into a single byte. This makes the resulting header
size at most 55 bytes, which is comparable to the 70-byte
header size used in MORE [5]. For 1.4-KB payload, both SOR
and MORE have no more than 5% header overhead, which we
expect has limited impact on the resulting throughput. On the
other hand, an ACK packet contains only the fields Type, Src,
Dst, Sender, and BatchID, and has zero data payload.

MAC header

type code
vectorPSNsrc dst batchID numFwder forwarder

list
ack
map

1 

Data

num
bytes 1 1 4 5 1 32 1 (num fwder)

sender

1 

Fig. 7. Packet header for a data packet in SOR.

D. Initiating the Transmission of a Batch
When a forwarder receives packets from a sender, it needs

to decide when it should start forwarding packets. If the
forwarder starts too early, it cannot generate too many in-
novative packets from the received encoded packets, while it
contends the channel with the sender that is still transmitting
packets. On the other hand, if the forwarder starts too late, the
sender may over-generate encoded packets, among which the
latter ones are non-innovative. This is in essence the spatial
pipelining problem [19], in which forwarder nodes need to
start transmissions at the right time for effective spatial reuse.
We borrow the idea from MORE [5], and propose a heuristic

in which a forwarder starts forwarding packets as soon as it has
received the expected number of packets within a batch that
will reach the forwarder itself. Without loss of generality, we
consider a set of nodes 1, 2, ⋅ ⋅ ⋅ ordered in descending order
ETX values for a given destination (i.e., node 4 is “closer”
to the destination than node - for - < 4). Let !#% be the link
delivery probability from node - to node 4, and 5 (-) be the set
of forwarders selected in advance by node -. We now consider
6% , denoting the expected number of packets that node 4 is
responsible for forwarding. Note that 6& equals the batch size
for source 7, and 6' = 0 for destination 8. To compute 6% ,
we first compute the proportion of packets that node 4 ∈ 5 (-)
will forward for node -. Such packets are those that have been
received by node 4 but not by the higher-priority forwarders
of node -. Hence,

6% =
%−1∑

#=1,%∈) (#)

6#

!#%
∏

*∈) (#),*>%(1− !#*)

1−
∏

*∈) (#)(1− !#*)
.

6% can be readily computed in ascending order of 4 [5].
Thus, the expected number of packets (denoted by /%) that
can reach node 4 for a given batch of data packets is:

/% =
%−1∑

#=1

6#!#% .

Note that 6% and /% can be distributed to all nodes in the
network via link-state flooding (see Section IV-C).
MORE [5] also uses 6% and /% compute credits that

specify the number of transmissions that a node makes for
every packet received. Our design is fundamentally different
from MORE in that we use 6% and /% to initiate the first
transmission of a batch of data packets for the purpose of
spatial pipelining, instead of triggering the transmissions of
individual packets as in MORE. In SOR, once a node is
initiated for transmitting a batch, it will transmit packets as
long as it has innovative packets needed by its higher-priority
forwarders, and the decision is based on the actual reception
of those forwarders (see Section IV-E).
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E. Triggering/Suppressing Transmission of a Batch
To decide whether to transmit data packets in a batch,

each SOR node independently associates the batch with two
local arrays LowMap and HighMap, which track the PSNs of
the packets that have been received by its lower-priority (up-
stream) and higher-priority (downstream) neighboring nodes,
respectively. Initially, all elements of both LowMap and High-
Map are set to zero, except for the source (i.e., the originator
of packets), whose elements of LowMap are all set to one.
Intuitively, the PSN tagged in an encoded data packet

specifies one of the native packets within a batch that con-
tributes to the encoded data packet. Our goal is to deliver to
the destination a batch-size number of encoded data packets
tagged with distinct PSNs, so that the destination can decode
and recover the batch of native data packets with a very high
probability (see Section IV-B).
A node triggers its transmission of a data packet as long as

there exists - such that LowMap[-] == 1 and HighMap[-] == 0
(i.e., - is the PSN that has been received by lower-priority
neighbors but not yet received by higher-priority neighbors).
The value of such - will then be set in the PSN field of the
encoded data packet to be forwarded. If no such - exists, it
means that the forwarded packets will not help higher-priority
nodes generate innovative packets, so the node will suppress
its transmissions. We cycle through LowMap and HighMap
for the next available - to set the PSN field. In addition, the
ACKMap field of the forwarded data packet is set to LowMap
held by the sender node, such that the -th bit of ACKMap is
set if LowMap[-] == 1.
When a node receives a data packet (call it packet 9), it

compares its forwarding priority with that of the sender node
of 9. If the receiver has a higher priority and is a forwarder
selected by the sender, then it sets LowMap[-] = 1, where -
is the PSN tagged in 9. This means that the -th native packet
is one of the native packets used by the lower-priority sender
to construct 9. On the other hand, if the receiver has a lower
priority, then it sets HighMap[-] = 1 if the -th bit of ACKMap
in 9 is set, meaning that the higher-priority sender is using the
-th native packet to encode forwarded packets.
Since the destination does not forward packets, we have it

broadcast zero-payload data packet with its current LowMap
upon receiving new PSNs.
To further increase the successful decoding probability, we

set the array sizes of LowMap and HighMap to be 10% larger
than the batch size. This allows the destination to receive 10%
more differently encoded packets than the batch size, and
hence the probability that these packets can be successfully
decoded will be much more close to one.
The use of the ACKMap field in SOR is similar to the batch

map field in ExOR [4]. In ExOR, each forwarded packet has a
batch map field that specifies the exact packet copies that have
been received by higher-priority nodes, while the ACKMap
field in SOR specifies which native packets contribute to the
encoded packets received by higher-priority nodes.

F. Acknowledging Receipt of a Batch
The destination inserts any received data packet to the

current batch of received data, and tries to decode the batch. If

the destination successfully decodes the current batch, it sends
an ACK packet to the source using shortest path routing (e.g.,
ETX) to indicate successful end-to-end delivery. We have all
nodes enabled promiscuous mode, so that they can suppress
the transmission of the current batch when they overhear the
ACK packet or receive data packets from a newer batch.

G. Summary
In summary, SOR forwards useful information across the

network by encoding received packets, without imposing a
strict timing order of transmissions of nodes as in ExOR. Also,
SOR nodes embed the information of encoded packets into the
ACKMap field that allows neighbors to infer whether to trigger
or suppress the transmissions of innovative and redundant
packets, respectively. This avoids using loss-rate-based credits
to control the sending rates of nodes as in MORE.
It is important to note that even with network coding, SOR

does not totally eliminate the transmissions of non-innovative
packets given a lossy, dynamic wireless medium. The overhead
of non-innovative transmissions is reflected in the resulting
throughput, which we will extensively study in Section V.

H. Other Implementation Issues
Handling Hidden Terminals. Like all opportunistic routing

protocols, SOR transmits data packets in broadcast. Since
no control frames are used in broadcast, the transmissions
of data packets only use physical carrier sensing to avoid
collisions due to hidden terminals and this could be ineffective.
We propose a heuristic based on pseudo-broadcast [14], such
that each SOR node switches to unicast when it has reused
a PSN for more than : times for a given batch, where
: is a tunable parameter. This allows nodes to utilize the
802.11 backoff mechanism for collision avoidance. As long as
nodes have promiscuous mode enabled, they can still overhear
packet transmissions of neighboring nodes. The trade-off is
that the 802.11 scheduler will retransmit unacknowledged
packets without re-encoding them, and hence we lose the gain
of network coding. We set : = 5 in our evaluation.
Handling Concurrent Flows. To efficiently allocate chan-

nel bandwidth across multiple flows, we can modify the wire-
less driver and add congestion control in the MAC layer (layer
2) to regulate the sending rates of multiple flows coming from
the SOR layer (layer 2.5). For instance, DiffQ [28] is a layer-
2 congestion control implementation using a backpressure
algorithm. Our current SOR implementation does not include
any congestion control, and we evaluate how multiple flows
react with this baseline implementation in Section V.

V. SIMULATION
We now evaluate different routing protocols in realistic

wireless scenarios using nsclick [23] with the Madwifi ex-
tension [18]. The nsclick simulator embeds the Click modular
router architecture [15] into the ns2 simulator [27], such that
the routing protocols are developed with Click, while the
physical (wireless) medium is simulated using ns2. The aim of
using nsclick is that with only changes of configuration scripts,
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we can readily deploy our Click-based routing protocols on a
real wireless mesh network.
Our simulation evaluates the throughput of three routing

protocols: (i) SOR, (ii) MORE [5], which is downloaded from
its authors’ website and slightly modified to fit into nsclick,
and (iii) ETX, a shortest-path routing protocol [6]. We do
not consider ExOR [4], mainly because its source code is
not published and its performance is shown to be worse than
MORE [5]. In addition, since TCP does not interact well with
opportunistic routing (see Section IV-A), our evaluation uses
UDP as the transport layer for bulk data transfer.
Our simulation is based on a lognormal shadowing prop-

agation model [26]. Let (#% and !#% be the distance and
the delivery probability for the link from node - to node 4,
respectively. According to [26], !#% can be approximated as a
function of (#% as follows:

!#% =

⎧
⎨

⎩

1− (("!#

, )2-)/2 if (#% ≤ /

(( 2,−"!#

, )2-)/2 if / < (#% ≤ 2/
0 otherwise,

(1)

where ; is the power attenuation factor ranging from 2 to 6,
and / is defined as the distance such that !#%(/) = 0.5. Note
that we also consider the case where ; = 0.5, which means
that !#% is a linear function of (#% . This linearity relationship is
shown to be a good approximation based on a sensor-network
testbed experiment [3], [9].
Our evaluation explores the impact of inaccurate link-level

measurements on routing protocols. Let !#% and !#%+"#% denote
the measured and actual delivery probabilities of the link from
node - to node 4, respectively, where !#% is determined by
Equation (1), and "#% denotes the measurement error. The
actual link delivery probability !#% + "#% specifies the actual
likelihood of propagation loss of a data packet traversing the
link from node - to node 4. Our evaluation considers different
distributions of "#% .
A data packet can be lost due to (i) the propagation loss as

specified by the actual link delivery probability !#% + "#% , and
(ii) the packet collisions as simulated by ns2. On the other
hand, each of the routing protocols replies a control packet to
indicate the receipt of a packet (i.e., MAC-layer ACK for ETX)
or a batch (i.e., ACK for MORE and SOR). These control
packets have much smaller sizes than the data packets, and
hence have higher delivery probabilities [6]. Therefore, we
assume that the control packets experience no propagation loss
and are subject to loss only due to packet collisions.
Our simulation environment in ns2 is based on the 802.11b

standard and the transmission range and the carrier-sensing
range are the default values 250m and 550m, respectively. We
set / = 125m, as !#% = 0 for (#% ≥ 2/. All routing protocols
operate under the fixed bit-rate 11Mb/s. We fix the payload
size at 1.4KB, while the size of the packet header depends
on the routing protocol, and fix the batch size at 32 packets
for SOR and MORE. Also, we have the RTS/CTS handshake
disabled. In each simulation, the source transmits data to the
destination as fast as possible for 30s. We simulate each setting
of parameters for 30 runs, and plot the average throughput and
its 95% confidence interval.

1 2 i j n
src dst

... ... ...
dij

Fig. 8. Single-flow, line topology.
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Fig. 9. Experiment 1: Throughput in a single-flow, line topology.

Experiment 1 (Single-flow, line topology with accurate
link-level estimates). We start with a single-flow, line topol-
ogy in Figure 8 and evaluate the throughput as a function of
the path length of a flow. The topology contains 0 nodes. A
single flow transmits data from node 1 to node 0. We configure
the distance between each pair of neighboring nodes - and
-+ 1 to be uniformly distributed between 25m and 75m (i.e.,
(#,#+1 ∼ $(25, 75)). We consider the case where all nodes
have accurate link delivery probabilities (i.e., "#% = 0).
Figure 9(a) shows the throughput versus different numbers

of nodes, with ; = 0.5. SOR’s throughput is higher than
both MORE and ETX by up to 30% and 90%, respectively.
Intuitively, SOR outperforms MORE even with accurate link-
level measurements because MORE nodes always forward a
fixed number of packets for each received packet given by
their transmit credits, while SOR nodes forward a varying
number of packets based on the actual reception of packets
by neighboring nodes through channel overhearing.
Figure 9(b) shows the impact of ; on the throughput when

we fix the number of nodes to be 20. As ; increases, short-
distance links become more reliable, while long-distance links
become less reliable. Thus, ETX prefers to choose short links
for its best route, and has improved throughput with increased
;. On the other hand, when ; increases, both MORE and SOR
have fewer long-distance links for opportunistic forwarding
and hence see throughput drops. Nevertheless, SOR remains
to have higher throughput than ETX with all ;, for example,
by 80% when ; = 0.5 and by 20% when ; = 4. In the
following experiments, we focus on ; = 0.5, while we obtain
similar results for ; = 2.
Experiment 2 (Impact of inaccurate link-level measure-

ments). When a flow starts transmitting packets, the actual link
delivery probabilities could deviate from prior measurements.
Here, we study such discrepancies, and validate our sensitivity
analysis in Section III-B. We again focus on the single-
flow, line topology in Figure 8, and we fix 0 = 20. As in
Experiment 1, we set (#,#+1 ∼ $(25, 75), and fix ; = 0.5.
Figure 10(a) first shows the throughput for the two-sided

error case where "#% ∼ $(−+,+) for + ≥ 0. ETX’s through-
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Fig. 10. Experiment 2: Throughput versus inaccuracy $!" .
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Fig. 11. Experiment 3: General topology.

put decreases by 30% as + increases to 0.25, even though "#%
has zero mean. In contrast, both MORE and SOR have stable
throughput regardless of +, while SOR’s throughput remains
higher than MORE’s. This also conforms to our analysis in
Section III-B1.
Figure 10(b) shows the one-sided error case where "#% is

uniformly distributed between 0 and + (i.e., "#% ∼ $(+, 0)
if + < 0, or "#% ∼ $(0, +) if + ≥ 0). When + = −0.3,
SOR’s throughput is 8.5× and 2.9× over MORE and ETX,
respectively. When + < 0, the network is actually more
lossy, but MORE nodes are not assigned enough credits to
push forward packets to the destination, and hence the overall
throughput significantly degrades. We also confirm this in
Section III-B2.
When + > 0, the network is actually more reliable, so all

protocols see increased throughput. However, MORE nodes
are given excess credits to forward additional packets. This
leads to more collisions, and hence the throughput drops when
+ further increases.
Experiment 3 (General topology). We now extend our

analysis to a general topology, in which we place 100 nodes
over a square plane of size <. We assume that there is a
single flow, whose source and destination are placed at the
bottom-left and top-right corners of the plane, respectively.
The remaining nodes are randomly placed over the plane.
Figures 11(a) depicts the throughput versus < when ; =

0.5, assuming that link-level measurements are accurate (i.e.,
"#% = 0). As < increases, the network becomes sparser, and
this degrades the link quality and throughput of all protocols.
Nevertheless, SOR’s throughput is 1.2× to 1.5× over MORE,
and 1.7× to 2.1× over ETX.
Figures 11(b) shows the throughput with inaccurate link-
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Fig. 12. Topologies for multi-flow experiment.
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Fig. 13. Experiment 4: Multiple flows (for topology in Figure 12(a)).

level measurements, where "#% is the one-sided error uniformly
distributed between 0 and +, and < is fixed to be 500. When
+ < 0, SOR’s throughput is 2.2× to 8.5× over MORE, and
2.1× to 3.1× over ETX.
Experiment 4 (Multiple flows). We now study the ro-

bustness of SOR when there are multiple concurrent flows
that interfere with each other. We focus on two metrics: (i)
per-flow throughput and (ii) fairness. To measure fairness, we
use Jain’s fairness index [13], defined as (

∑
9#)2/(5

∑
92
# ),

which accounts for 5 flows with throughputs 91, 92, ⋅ ⋅ ⋅9) .
We start with an =×> lattice topology shown in Figure 12(a),

in which each row corresponds to a single flow and each node
is only responsible for the flow along the row. Let ( be the
distance between the neighboring nodes and > be the number
of nodes in a row (or flow). In the experiment, we fix ( = 50,
> = 8, and ; = 0.5.
Figures 13(a) and 13(b) show the per-flow throughput versus

the number of flows (i.e., =), where we assume inaccurate
link-level measurements. As expected, the per-flow throughput
decreases when more interfering flows concurrently trans-
mit data. Nevertheless, SOR’s throughput is 1.1× and 1.4×
over MORE, and up to 2.9× and 3.2× over ETX, when
"#% ∼ $(−0.2, 0.2) and "#% ∼ $(−0.2, 0), respectively. Also,
Figures 13(c) and 13(d) show the fairness versus =. Note that
SOR maintains a high fairness index (≥ 0.98) even though the
link-level measurements are inaccurate.
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Fig. 14. Experiment 4: Multiple flows (for topology in Figure 12(b)).

To see how a node simultaneously handles multiple flows,
we switch to a line topology in Figure 12(b), which contains
two flows from 1 to 0 and from 0 to 1. We let (#% ∼ $(25, 75)
and ; = 0.5. In the currently published implementation of
MORE, each node supports only a single flow. Thus, we focus
on SOR and ETX only. Specifically, we do not implement
any congestion control algorithm: In SOR, each node inspects
flows in a round-robin manner and forwards any encoded
packet when available; in ETX, each node simply forwards any
received packet. We evaluate these baseline implementations
of SOR and ETX (see discussion in Section IV-H).
Figures 14(a) and 14(b) show the per-flow throughput versus

0, the length of the line topology. SOR’s throughput is at least
8× over ETX when 0 = 20. In addition, SOR still keeps a
high fairness index (≥ 0.98) for all 0.
Summary: We show that for various topologies, SOR

maintains higher throughput than MORE and ETX when the
actual link delivery probabilities deviate from the measured
values. Also, SOR remains robust with multiple concurrent
flows, in terms of per-flow throughput and fairness.

VI. CONCLUSIONS

It is important for wireless mesh routing to maintain high
throughput in inherently dynamic wireless networks that make
the measured link delivery probabilities deviate from the actual
values. As analytically shown in this paper, the inaccurate
measurements can significantly degrade the throughput of
existing mesh routing protocols. This motivates us to design
SOR. While each of the design blocks of SOR is built upon
existing opportunistic routing schemes, we show via extensive
simulation that their combination enables SOR to improve
throughput in various settings, such as general topologies and
multi-flow scenarios, where we have inaccurate estimates of
link delivery probabilities.
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