
The Effect of DNS Delays on Worm Propagation in
an IPv6 Internet

Abhinav Kamra, Hanhua Feng, Vishal Misra and Angelos D. Keromytis
Department of Computer Science

Columbia University in the City of New York
Email: {kamra,hanhua,misra,angelos}@cs.columbia.edu

Abstract—It is a commonly held belief that IPv6 provides
greater security against random-scanning worms by virtue of
a very sparse address space. We show that an intelligent worm
can exploit the directory and naming services necessary for the
functioning of any network, and we model the behavior of such
a worm in this paper. We explore via analysis and simulation the
spread of such worms in an IPv6 Internet. Our results indicate
that such a worm can exhibit propagation speeds comparable to
an IPv4 random-scanning worm. We develop a detailed analytical
model that reveals the relationship between network parameters
and the spreading rate of the worm in an IPv6 world. We also
develop a simulator based on our analytical model. Simulation
results based on parameters chosen from real measurements and
the current Internet indicate that an intelligent worm can spread
surprising fast in an IPv6 world by using simple strategies. The
performance of the worm depends heavily on these strategies,
which in turn depend on how secure the directory and naming
services of a network are. As a result, additional work is needed
in developing detection and defense mechanisms against future
worms, and our work identifies directory and naming services
as the natural place to do it.
Keywords: Stochastic Processes/Queuing Theory, Simula-

tions, Worm Propagation.

I. INTRODUCTION
In recent years, the Internet has been plagued by a number

of worms [1], [2], [3], [4]. Many of these worms use random
address scanning to identify new hosts to infect. The Slammer
[5] and Witty [6] worms amply demonstrated the effectiveness
of this brute force technique in spreading at time scales that
do not permit human reaction and make automated reaction
very difficult. Arguably, the effectiveness of random scanning
owes to the fact that IPv4 addresses are only 32 bits long, thus
allowing for an fast exhaustive search of all possible hosts, and
the relative population (host) density in this space.
Following this reasoning, it is natural to expect that the

eventual adoption of IPv6 [7] will affect the propagation speed
of scanning worms. In particular, the 128-bit IPv6 addresses
should make it considerably more difficult for a worm to
find new targets through random selection. Assuming that the
total number of hosts on the Internet does not increase by
a similar factor, the work factor for finding a target in an

This material was supported in part by the National Science Foundation
under Grant No. CAREER ANI-0238299 and Grant No. CCR-TC-0208972,
and by gifts from the Intel IT Research Council, CISCO URP, and IBM.
Any opinions, fi ndings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

IPv6 Internet will increase by approximately 296, rendering
random scanning prohibitively expensive. Note that email
worms, which use the address books and other information
resident on infected machines to identify new targets, will not
be affected by the adoption of IPv6.
However, we believe that future worms are likely to use

other, more effective strategies in identifying and targeting
likely targets. In particular, we expect worms to use a two-
level scanning hierarchy, whereby different mechanisms are
used when scanning across subnets and when scanning inside
subnets. This approach, which has already been used by some
worms [2], [8], exploits the fact that scanning and propagation
speeds inside a local network are considerably higher, due to
lower latency and higher bandwidth. In an IPv6 network, a
second consideration is the ease of locating additional likely
targets once one node on the network has been infected.
For example, routing protocols, Windows service location
announcements, neighbor discovery caches, and host configu-
ration and log files can be used to identify additional hosts on
the local network. Thus, the main obstacle faced by a scanning
worm in IPv6 is how to locate valid networks, and at least a
small number of hosts in those networks.
One strategy we identify is DNS random scanning, i.e., a

worm that guesses DNS names instead of IP addresses, and
uses the DNS infrastructure to locate likely targets. Although
the inherent cost of a DNS query can be significantly larger
than that of a simple probe at a random addresses, we find
through simulations that a worm that pipelines DNS queries
and attempts infections asynchronously (i.e., as DNS replies
are received) can exhibit propagation speeds very close to
those of random-scanning worms in the current IPv4 Internet.
This is a particularly surprising and worrisome finding, as it
greatly diminishes the prospect of inherently better security in
an IPv6 Internet. After our submission of this paper, one such
worm appeared in the IPv4 Internet, named MyDoom [9].
Our analytical models indicate that the spread of such DNS-

based worms is greatly influenced by the variance of the
fractions of hosts currently infected in various subnetworks.
The higher the variance, the slower is the growth. Thus, a fast-
spreading worm should spread out as uniformly as possible
across different subnets, and hence it needs an effective strat-
egy for identifying vulnerable hosts in different subnets. Our
results also demonstrate that the speed of spread depends to
a great extent on the strategy employed in locating additional

targets within a network once a host has been infected. Hence,
security should be tightened against strategies that allow easy
or unauthorized access to valid IPv6 addresses in a local
network.
Thus, we believe that further research is needed in de-

veloping mechanisms for detecting and responding to fast-
spreading worms. One natural initial counter-measure to the
“DNS worm” is to install anomaly detection capabilities close
to DNS servers. This will help in identifying likely worm
infestations by measuring the rate at which hosts generate DNS
queries, although it is unlikely to eliminate the worm problem
by itself. While the scenario that we study in this paper
concerns DNS and IP addresses, the general principles apply
to any situation where “targets” are identified by employing
a directory or search service. We hope that our work will
incentivize additional work in the area of worm detection and
countermeasures.

Paper Organization: The remainder of this paper is orga-
nized as follows. Section II gives a brief background on the
DNS infrastructure, along with a simple analytical model for
the cost of queries. Section III discusses the DNS worm, and
models its propagation speed. Section IV briefly describes the
simulator we use in Section V, which contains our results on
projected worm propagation using both mathematical models
and the DNS worm simulator. Section VI discusses related
work on worm detection and defenses. We conclude the paper
with Section VII.

II. BACKGROUND ON DNS
DNS provides a mapping from alphabetical domain names

to the numerical IP addresses used to identify hosts in the
Internet. The DNS architecture is a hierarchy of distributed
“name-servers” that contain databases of name-to-IP map-
pings. In a typical DNS query, a client needs to obtain the IP
address for a distant host it needs to contact. It first contacts
the local “resolver”, a DNS server in the same domain as the
client. This resolver then contacts one of the root name-servers
that are at the top of the DNS hierarchy. The resolver is then
recursively referred to a succession of name-servers down the
hierarchy until it queries the authoritative name-server for the
hostname to be resolved. The authoritative name-server then
replies to the local resolver with the required IP address. The
local resolver then sends it to the client and also caches a copy
for immediate retrieval in case of further queries for the same
hostname from a client in the domain for which it is the local
resolver. The logical path taken by a typical DNS query is
shown in Figure 1.
The time taken for a DNS query consists of round-trip

delays between the local resolver and the client and also the
round-trip delays between the local resolver and the name-
servers queried. In mathematical form,

d = dlocal + dinternet (1)

where dlocal is the round-trip delay between the client and the
resolver and dinternet is the elapsed time between the time

Fig. 1. A typical DNS Query path: C is the client. D1 is the local DNS
resolver, D2, D3, D4 are DNS servers with D4 the authoritative DNS server
for host H .

the resolver issues the DNS query to the root name-server and
the time it gets the response back from the authoritative name-
server. The delay dinternet may consist of round-trip times of
communication amongst multiple pairs of hosts. These round-
trip delays in turn depend on a multitude of factors:
1) Timeouts and Retransmissions: Packet losses due to

congestion in the network may trigger retransmissions that
increase the DNS delay. If a DNS query packet is lost,
typically the client waits for a timeout T before sending a
retransmission. If pr is the loss probability (and hence the
retransmission probability), then the expected DNS delay for
a query is

dav = dlocal + dinternet +
prT

1 − pr
(2)

We assume that the local resolver resides in the same
subnetwork as the client and so the delay dlocal is not much
affected by the load on the DNS servers.
2) DNS Cache Hit/Miss: The hostname to be resolved

may already be present in the cache of the local resolver, in
which case the DNS delay is considerably less. In essence,
from the client’s perspective, the DNS delay depends on (i) the
Cache Hit/Miss probability and (ii) Congestion in the Internet
(which may affect the round-trip delays).
If pDCH is the probability of a DNS cache hit when

resolving a hostname, then the average DNS delay may be
written as

dcached
av = pDCH ∗ dlocal + (1 − pDCH) ∗ dav

= dlocal + (1 − pDCH)

. (dinternet +
prT

1 − pr
) (3)

III. WORM PROPAGATION MODEL

A. Random Scanning
In a typical random scanning worm (such as versions of

CodeRed and Slammer worm) propagating in an IPv4 Internet

space, each worm instance generates random IP addresses
and tries to infect the host with that IP address. Various
earlier works [10], [11] have modeled this random scanning
worm using a simple epidemic model. The assumption is
that any Internet host is either vulnerable to infection or has
already been infected, in which case it contributes to the worm
propagation by infecting other machines. Also, once a host
has been infected, it remains infected. The classical simple
epidemic model is given by the equation:

dI(t)
dt

= βI(t)[N − I(t)] (4)

where β is the pairwise rate of infection [12]. At t = 0,
I(0) hosts are infected and start the process of infecting the
remaining N − I(0) hosts.
β is given by β = ξ

Ω where ξ is the scan rate of the worm
and Ω is the scanning space. For instance, in the case of the
Slammer worm [5], each infected host sent out 4000 scans
per second and hence ξ = 4000/s. Since the Slammer worm
generates random IP addresses from the whole IPv4 space
consisting of 232 IP addresses, we have Ω = 232.
In an IPv6 Internet, random scanning worms run into

insurmountable problems since the scanning space Ω is huge
for IPv6. This results in extremely low values of the pairwise
infection rate β and hence very slow propagation for worms
that propagate at reasonable speeds in IPv4.
The fraction of infected hosts at any given time t is denoted

by a(t) = I(t)
N . The dynamics of a follow an equation similar

to Equation (4).

B. The DNS Worm
The DNS Worm overcomes this obstacle by not relying

on random scanning. The DNS worm uses DNS queries to
find active IP addresses in the sparse IPv6 address space. It
consists of two parts. At the back-end is an address generator
that generates strings which might be actual hostnames on the
Internet. The front-end then uses DNS resolution to find the
corresponding IP address, which is then attacked and infected,
if deemed vulnerable.
1) String Generation: The DNS Worm back-end consists

of a string generator that generates strings which are probable
names of actual hosts on the Internet. Internet hostnames
are typically made up of common words separated by dots
(e.g., www.yahoo.com). Most of the words used are dictionary
words; some prefixes and suffixes such as “www” and “.com”
respectively, even though not dictionary words, are extremely
common. Thus, a smart DNS Worm can use a form of
dictionary attack to generate probable Internet hostnames.
Apart from dictionary-based string generation, a worm can use
web search engines to gather valid hostnames, and in particular
server names. Still more hostnames that are not necessarily
web servers and hence do not show up on web search engines,
can be retrieved from other public access Internet locations
such as Google groups, mailing lists, etc. Recently, a variant of
an email worm known as MyDoom, harvested email addresses
by sending search queries to popular web search engines as

it spread [9]. This slowed the search engines considerably,
in some cases totally knocking them out †. Another worm
called Santy used the search engine Google to find websites
containing online bulletin boards running a vulnerable version
of the widely used PHP Bulletin Board(phpBB) software. By
using similar sophisticated techniques, the string generator can
produce actual host addresses with high probability.
We denote the set of all possible strings which can be

produced by the string generator as χ. The subset of χ that are
actual host addresses is denoted by χtarget. An instance of the
DNS Worm that uses the string generator to produce probable
host addresses and then tries to infect the valid addresses is
only able to infect hosts from the set χtarget. Naturally, there
are still valid Internet host addresses that lie outside χ but
which cannot be produced by the string generator and as a
consequence cannot be infected. Thus, from the view of the
DNS Worm, the vulnerable hosts on the Internet are only the
hosts with addresses contained in string set χtarget. Hence for
all analytical purposes, N = χtarget.
The DNS Worm operates by iterating over two steps:
• Generate a new probable hostname using the string gen-
erator.

• Resolve the probable hostname by initiating a DNS query.
If a valid IP address is returned, it implies that there is
an actual Internet host with this name. In this case the
host is attacked and infected. The DNS query may also
result in no corresponding IP address being found.

For a string produced by the string generator, the probability
of it being a valid hostname is

σ =
χtarget

χ
(5)

Note that we assume that all these χtarget hosts have the
vulnerability which the DNS Worm exploits. In case only
some fraction of the χtarget hosts have the vulnerability, the
parameter σ can be scaled accordingly.
2) Effective Scan Rate: For each scan that the DNS Worm

performs, it has to perform a DNS query and, if the query is
successful, infect the resulting IP address (if vulnerable). The
total time taken in the process is the sum of the DNS delay
and the infection time. On the other hand if the DNS query is
unsuccessful, the worm immediately starts generating a new
string for the next probable infection. Hence the total time is
just the DNS delay. Since the DNS query was unsuccessful,
the string was not a valid hostname and hence cannot be found
in the DNS Domain-Local Cache. Therefore, the average delay
for such queries is dav(a). The average delay for successful
queries is dcached

av (a) + τf where τf is the average infection
time.
Note that these delays are a function of a, the fraction

of infected hosts (as defined in Section III-A), since, as the
number of infected hosts goes up, so does the DNS traffic due
to the worms and hence the load on the DNS servers, which
in turn affects the DNS delays.

†Note that this occurred after the submission of this paper to Infocom 2005.

As observed in Equation (5), the probability of querying
for valid hostnames (and hence of successful DNS queries) is
given by σ. The effective average DNS delay for a worm then
becomes

deff (a) = σ(τf + dcached
av (a)) + (1 − σ)(dav(a)) (6)

Hence the effective scan rate of the DNS worm is given by

ξ(a) =
1

σ(τf + dcached
av (a)) + (1 − σ)(dav(a))

(7)

3) DNS Worm Propagation Rate: We now derive the dy-
namics of a, the fraction of infected machines. Recall that a is
the fraction of “vulnerable” machines that have been infected.
If I(t) is the number of machines infected at time t, then
(since from the point of view of the DNS Worm the number
of vulnerable machines is χtarget) we have a(t) = I(t)

χtarget .
Consider an infinitesimal time period δ. If the average scan

rate of infected machines is ξ, then in time δ, I(t) machines
can perform ξδI(t) number of scans. Out of these, since σ =
χtarget

χ is the probability of a DNS Worm producing a string
which is a valid Internet host, the number of scans (and so
the number of DNS queries) that return a valid IP address are
σξδI(t). Since a fraction of the vulnerable hosts are already
infected, the probability of an IP address retrieved using a
DNS query belonging to a still uninfected host is 1 − a(t).
Hence the new infections in time period δ are

I(t + δ) − I(t) = σξδI(t) ∗ (1 − I(t)
χtarget)

⇒ dI(t)
d(t) = σξI(t) ∗ (1 − I(t)

χtarget)

Since a(t) = I(t)
χtarget , we have

ȧ = σξa(1 − a)

III-B.2 shows how ξ also varies with a. Thus, we have the
differential equation governing the dynamics of a given by:

ȧ =
σa(1 − a)

σ(τf + dcached
av (a)) + (1 − σ)(dav(a))

(8)

C. Modeling the DNS architecture and the Resulting Delays
The DNS architecture consists of a hierarchy of DNS

servers that respond to DNS queries. At the top of the
hierarchy are the Root DNS servers. Most of the DNS queries
that are not locally resolved are at first directed to one of
these Root DNS servers. During periods of fast propagation
of the DNS Worm, the number of DNS queries increases
dramatically, possibly overloading the Root DNS servers,
which then become the bottleneck. The Root DNS servers have
a bounded processing power. To study the bounded throughput
behavior of Root DNS servers, we model them as an M/M/1/K
queuing system. This is just a first order approximation and in
no way implies that the actual Root server behavior follows
the M/M/1/K queuing model.
The queuing system serves DNS queries and has an expo-

nential service rate given by µ. K is the maximum number
of queries that can be present (either waiting or being served)
in the queuing system at a given time. During times of high

load, not all queries can be served. Many of the queries will
be dropped due to buffer exhaustion in the queuing system.
If λ is the arrival rate of queries, then the probability of the

queue having i queries waiting to be served is given by

π(i) =
(1 − ρ)ρi

1 − ρK+1
(9)

where ρ is the load on the system and is given by ρ = λ
µ .

The expected probability of a query being dropped due to
buffer exhaustion is given by

E[loss] = π(K) =
(1 − ρ)ρK

1 − ρK+1
(10)

Queries are accepted in the system when the M/M/1/K
queue is not full. The mean expected response time of only
the accepted queries is then given by

E[Xa] = E[X |accepted] =
E[X]

1 − E[loss]

=
1

1 − π(K)
1
µ

K−1∑

i=0

(i + 1)π(i)

=
1
µ

[
1

1 − ρ
− KρK

1 − ρK
] (11)

For the special case of ρ = 1, we have

π(i)ρ=1 = Limρ→1
(1 − ρ)ρi

1 − ρK+1
=

1
K + 1

E[loss]ρ=1 = π(K) =
1

K + 1

E[Xa]ρ=1 =
E[X]ρ=1

1 − E[loss]ρ=1
=

K + 1
2µ

(12)

The query arrival rate λ depends on how many hosts are
sending DNS queries. The higher the number of infected hosts,
the more DNS queries will be received by the name-servers.
Hence λ will increase with a, the fraction of infected hosts,
which in turn implies that E[Xa] and E[loss] are functions
of a. If ξ is the scan rate of infected hosts, then λ(a) will
be the number of infected hosts times the scan rate. That is
λ = aNξ. Thus, we have

ρ(a) =
aNξ

µ
(13)

D. DNS Worm Propagation Revisited
From Equation (8), we see that the rate of worm propagation

depends on DNS delay values dav(a) and dcached
av (a) that are

given by Equations (2) and (3).
The system of Root DNS servers is modeled as an M/M/1/K

queuing system in section III-C. The expected response time
of the queuing system for accepted queries is thus a good
measure of the average time spent by a typical DNS query
in the Internet. Using Equation (11) we have dinternet(a) =
E[Xa].
The expected probability of a DNS query being dropped

in the M/M/1/K queuing model is a good measure of the
retransmission probability of a DNS query by the worm. Using

Equation (10), we have pr(a) = E[loss]. Note that dinternet

and pr are functions of a, since E[Xa] and E[loss] are also
functions of a.
Using Equations (2) and (3), we have

dav(a) = dlocal + dinternet +
prT

1 − pr

= dlocal + E[Xa] +
prT

1 − pr

= dlocal +
prT

1 − pr

+
1
µ

[
1

1 − ρ
− KρK

1 − ρK
] (14)

dcached
av (a) = dlocal + (1 − pDCH)(dinternet +

prT

1 − pr
)

= dlocal + (1 − pDCH)(E[Xa] +
prT

1 − pr
)

= dlocal + (1 − pDCH)(
prT

1 − pr

+
1
µ

[
1

1 − ρ
− KρK

1 − ρK
]) (15)

where ρ = aNξ
µ .

Finally, we have the rate of propagation of the DNS Worm
given by

ȧ =
σa(1 − a)

σ(τf + dcached
av (a)) + (1 − σ)(dav(a))

(16)

where dav(a) and dcached
av (a) are given by Equations (14) and

(15).

E. The Two-level Model
The epidemic model of a uniform scanning worm described

in III-A does not capture the behavior of many existing
worms that differentiate the IP addresses of the same IPv4
subnet to arbitrary IP addresses (e.g., CodeRed2). This locality
property becomes much more important in IPv6 networks. The
local IPv6 address space is already too large for a worm to
perform random scans just by guessing IP addresses. However,
there are many more efficient ways to find a host in the
local network. Routing protocols, Windows service location
announcements, neighbor discovery caches, and host config-
uration and log files can be exploited to identify additional
hosts on the local network.
In the previous sections, we proposed to use name-servers

to search for hosts in an IPv6 Internet, which is much less
efficient than possible methods that explore the local network.
An effective IPv6 worm has to consider the locality of the
Internet and use different propagation methods: a global scan
method and a local scan method. The global scan method is
inefficient but necessary, because it can cover a large portion
of the total population of the vulnerable hosts on the Internet.
The local scan method is efficient but can only discover
vulnerable hosts on the local network. This results in a much
higher infection rate to hosts in the local network than against

arbitrary host on the Internet. As a result, we use a two-level
model to describe the propagation of an IPv6 worm.
Suppose the population of vulnerable hosts in local network

i is Ni. For an infected host in this local network, let Ωi be
the search space of addresses of local scans. Quantity Ωi is
not necessarily very large; it can be just the population of all
(vulnerable and non-vulnerable) hosts on the local network.
Suppose there are n such local networks on the Internet, and
the total vulnerable hosts on the Internet is N =

∑n
i=1 Ni.

Let Ω be the search space for global scans, that is actually
the cardinality of the set of names that we feed to name-
servers. Clearly, we can assume a very large Ω, much greater
than

∑n
i=1 Ωi, although it may be much less than 2128, the

cardinality of the IPv6 address space. We denote by ξi and ξ
the local and global scan rates. For a worm using pure random
scanning, ξi is greater than ξ due to shorter round-trip times
and greater available bandwidth within a local network. With
a DNS Worm, ξi can be much greater than ξ due to DNS
delays. The rates at which an individual host in local network
i is locally and globally scanned are (ξi/Ωi)Ii and (ξ/Ω)I
respectively. Therefore, the infection rate of a new host in
local network i is

Ri =
(
ξiIi

Ωi
+
ξI

Ω

)
(Ni − Ii) . (17)

It is not surprising that the locality considerably affects worm
propagation – in fact, we can analyze it with a continuous
model derived from (17), which is

dIi

dt
=

(
ξiIi

Ωi
+
ξI

Ω

)
(Ni − Ii) . (18)

Let Ai = Ii/Ni be the fraction of infected hosts, and also
assume all local networks are homogeneous, i.e, all Ni’s, ξi’s
and Ω’s are respectively identical and Ni = N/n. Then, we
obtain

dAi

dt
=

ξiNi

Ωi
Ai +

ξ

Ω

n∑

j=0

AjNj

 (1 − Ai) (19)

=

ξiNi

Ωi
Ai +

ξN

Ω

 1
n

n∑

j=0

Aj

 (1 − Ai) . (20)

Summing on both sides over i = 1, . . . , n, and observing that
the global fraction of infected host a = 1

n (
∑n

i=1 Ai), we
obtain
da

dt

=
1
n

n∑

i=0

ξiNi

Ωi
Ai +

ξN

Ω

 1
n

n∑

j=0

Aj

 (1 − Ai)

=
ξiNi

Ωi

(
1
n

n∑

i=0

Ai

)
+
ξN

Ω

 1
n

n∑

j=0

Aj

−ξiNi

Ωi

(
1
n

n∑

i=0

A2
i

)
− ξN

Ω

 1
n

n∑

j=0

Aj

2

=
(
ξiNi

Ωi
+
ξN

Ω

)
a − ξN

Ω
a2 − ξiNi

Ωi

(
1
n

n∑

i=0

A2
i

)

=
(
ξiNi

Ωi
+
ξN

Ω

)
a −

(
ξN

Ω
+
ξiNi

Ωi

)
a2

−ξiNi

Ωi

(
1
n

n∑

i=0

(Ai − a)2
)

= βa(1 − a) − ξiNi

Ωi

(
1
n

n∑

i=0

(Ai − a)2
)

, (21)

where β =
(

ξiNi

Ωi
+ ξN

Ω

)
is the sum of infection rates of

global and local scanning, and it is identical for all i’s with our
assumption. Note that the last item in (21) is the product of the
local infection rate ξiNi/Ωi and the variance of Ai’s, which
is non-negative. If all subnets have identical numbers of initial
infected hosts, this item is zero and the model is simplified to
the simple epidemic model. With a variation of fractions of
infected hosts in local networks, the global average infection
rate will decrease by a rate proportional to the variance of
fractions.

IV. THE DNS WORM SIMULATOR

We use a simulator to analyze the propagation of IPv6
worms with the models in Section III. There may be thou-
sands to millions of vulnerable hosts on the Internet, so it
is impossible to simulate them individually. Even if we do
not consider computational complexity, it is hard to identify
representative configurations. For this reason, we simulate
each local network as a group. In our simulation, we consider
the scan of each infected host as a stochastic process. The
time between two scans is random and may satisfy certain
distributions. We assume the scanning processes of different
hosts are fairly independent. For worms using multi-threading,
we consider each thread as an independent stochastic process.
The probabilities that global and local scans from an infected
host reach a certain vulnerable host are 1/Ωi and 1/Ω,
respectively, and are both very small. Then, regardless of the
nature of the infection mechanism, the stochastic process for
the number of a local network is close to a Poisson process
with rate Ri, due to many Bernoulli selections with small
probabilities and the summation of independent processes.
With this assumption, we simulate the worm propagation by
dividing the whole Internet into n counting processes that
represent n local networks. Each counting process is a Poisson
process with a changing rate, which is Ri for the i-th local
network. We assume there is an initial population of infected
hosts and denote it by I0 =

∑n
i=0 I0

i .

V. SIMULATION EXPERIMENTS

In this section, we study the propagation rates of various
kinds of DNS worms based on our model in the earlier sections
and the effect of various parameters.
Although the address space of IPv6 is 296 times greater than

that of IPv4, the total number of hosts on an IPv6 Internet is

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 50 100 150 200 250

Nu
m

be
r o

f i
nf

ec
te

d
ho

st
s

Time t (seconds)

Random Slammer
DNS Slammer Basic

Two-level DNS Slammer Basic
DNS Slammer Advanced

Fig. 2. Comparison of various versions of DNS-Slammer worms vs the
original Slammer worm propagating in IPv4

expected to be only a few orders of magnitude greater than
what it is now.
Table I shows the various parameters related to two dif-

ferent well-studied worms, Slammer and CodeRed. We use
DNS Worm parameters comparable to Slammer and CodeRed
parameters in evaluating the propagation.
We define two different types of DNS Worms. The first,

referred to as DNS-Basic Worm, incurs only constant DNS
delays for all its DNS queries. The other version, referred to as
DNS-Advanced Worm, incurs DNS delays based on the DNS
delay model described in III-C. The Simulator uses Equation
(16) to simulate the propagation of the DNS-Advanced Worm.
The DNS Worm also has parameters such as the maximum

number of vulnerable machines N , which are common with
earlier IPv4 worms such as Slammer and CodeRed. We refer
to DNS-Slammer as the worm that has all such common
parameters the same as the Slammer worm. Similarly, the
DNS-CodeRed worm has all the common parameters the same
as the CodeRed worm. This is further shown in Table I.
We can have combinations of DNS Worm characteristics.

For example, DNS-Basic-Slammer is the DNS Worm with
Slammer parameters and constant DNS delays.
For the simulation of the DNS-Advanced Worm, we also

need the values of the DNS model parameters µ and K . We
choose them to be µ = 5 × 104/second and K = 1000.

A. Comparison with IPv4 Worms
We now examine how the DNS Worm propagates in the

IPv6 Internet space, compared to earlier worms such as
Slammer and CodeRed in the IPv4 Internet space.
Figure 2 shows how the DNS Worm propagation in IPv6

compares with that of the Slammer worm in an IPv4 envi-
ronment. The DNS-Slammer-Basic worm (DNS Worm with
Slammer parameters and constant DNS delays) is able to
propagate almost as fast as the Slammer worm. The two-level
DNS-Slammer-Basic worm has an additional local-subnet
propagation rate that makes it extremely fast. Thus, it is able
to infect all the vulnerable hosts in as few as 20 seconds. The
DNS-Slammer-Advanced worm does slow itself down due to

TABLE I
PARAMETERS TABLE: VARIOUS PARAMETERS USED BY THE WORMS AND CORRESPONDING VALUES FOR SLAMMER AND CODERED WORMS AS

IDENTIFIED IN STUDIES (FOR SUBSECTIONSV-A AND V-B ONLY)

Parameter Description Slammer Value CodeRed Value DNS-Slammer Value DNS-CodeRed Value
ξi Scan Rate 4000 / second 358 / minute 4000 / second 358 / minute
N Vulnerable hosts 75000 360000 75000 360000
n Subnetworks N/A N/A 7500 36000
Ni Hosts in each subnetwork N/A N/A 10 10
σ Probability of successful scans 75000/232 360000/232 1/50 1/50
I0 Initially infected hosts 10 10 10 10

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 1 10 100 1000 10000 100000

Nu
m

be
r o

f i
nf

ec
te

d
ho

st
s

Time t (seconds)

Random Code Red
DNS Code Red

Two-level DNS Code Red
DNS Code Red M/M/1/K

Fig. 3. Comparison of various kinds of DNS-CodeRed worms with the
Original CodeRed worm propagating in IPv4

increasing DNS delays as the infection increases, but is able
to propagate comparably with the Slammer worm during the
initial stages of infection.
Figure 3 shows results for the same experiments using

CodeRed worm parameters for all the worm models. It is
interesting to note that the DNS-CodeRed-Basic worm now
propagates much faster than the CodeRed worm. This is
because CodeRed worm has a much smaller σ (probability of
successful scan) than DNS-CodeRed-Basic worm. The DNS-
CodeRed-Advanced worm still propagates much faster than
the CodeRed worm. Note that the x-axis in Figure 3 is in
log-scale, since the two-level worm is much faster than other
worms.

B. Effect of Maximum Throughput

In our DNS Worm model explained in III, we observe that
the worm propagation rate given by Equation (16) depends
on the DNS architecture parameters µ and K , which are
respectively the maximum throughput of DNS queries that the
DNS architecture can handle and the maximum backlog for
the queries that the system can hold at a given time.
In this simulation, we explore the effect µ and K have on

the propagation rate of the DNS Worm. For this purpose, we
choose various values of µ andK and simulate the propagation
of the DNS-Advanced worm. Figure 4 shows how µ and K
affect the propagation rate of the DNS-Advanced worm. Figure
5 shows the same simulations done with CodeRed parameters

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 50 100 150 200 250 300
Nu

m
be

r o
f i

nf
ec

te
d

ho
st

s
Time t (seconds)

DNS Slammer Basic
µ=1E5,K=1000

Advanced,µ=1E5,K=2000
Advanced,µ=5E4,K=1000
Advanced,µ=1E4,K=1000

Fig. 4. Effect of varying throughput µ and buffer size K on the various
forms of the DNS-Slammer Worm

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Nu
m

be
r o

f i
nf

ec
te

d
ho

st
s

Time t (seconds)

DNS Code Red Basic
µ=10E5,K=1000
µ=5E4,K=1000
µ=1E4,K=1000

Fig. 5. Effect of varying throughput µ on the various forms of the DNS-
CodeRed Worm

with similar results and observations.
As we can see, K does not have much of an impact on

the propagation for worm models with the same µ value.
On the other hand, increased throughput µ helps the worm
to propagate faster. For comparison purposes, we also show
the propagation of a DNS-Basic worm that has constant DNS
delays and hence does not depend on µ and K values. The
interesting thing to note is that the shape of the propagation
curves for DNS-Advanced worm models is very different from
the DNS-Basic worms. We observe a break-off point where
the worm propagation suddenly slows down. This is due to

TABLE II
PARAMETERS TABLE: VARIOUS PARAMETERS USED BY THE ONE-LEVEL
AND TWO-LEVEL WORMS (FOR SUBSECTIONS V-C AND V-D ONLY)

Parameter Description Value
ξ Global Scan Rate 0.5 / second
ξi Local Scan Rate 1 / second
N Vulnerable hosts 108

n Subnetworks 104

Ni Hosts in each subnetwork 104

σ Probability of successful scans 1/50
I0 Initially infected hosts 1000

the saturation of the queue for the M/M/1/K queuing system
described in III-C; furthermore, the high number of queries
generated by the spreading worm acts as a negative feedback,
self-regulating the spread. This points to a possible defense
mechanism, limiting the throughput of the DNS servers to
reach the break-off point as early as possible. On the other
hand, it is also likely to result in poor performance of DNS
lookups for legitimate users. One possible answer is better
anomaly detectors at DNS servers. Deploying them only at
the root DNS servers may be sufficient, depending on their
accuracy.

C. Effect of Initial Variance on Propagation Rate

Section III-E shows that the two-level worm propagation
rate is affected by the variance of number of infected hosts
in different local subnetworks. Here, we examine the effect of
initial variance in the distribution of infected hosts in the local
subnetworks on the propagation rate of the DNS-Basic Worm.
For this experiment, we set the total number of vulnerable

hosts to 108, with each local subnetwork having 104 vulnerable
hosts. The local scan rate ξi is supposed to be 1 per second
and the global scan rate ξ is 0.5 per second. We assume that
the worm can efficiently discover all existing vulnerable hosts
on a local subnetwork, which means Ωi = Ni. For the global
scanning, we set σ = N/Ω = 1/50. Initially, the worm has
already infected I0 = 1000 hosts. These parameters are listed
in Table II. These 1000 hosts may be distributed in various
ways amongst the 104 local subnetworks, resulting in various
variance levels. Figure 6 shows the worm propagation as a
function of time for different initial variance values. Note
that curve (e) in Figure 6 is an analytical result for the ideal
case of no variance throughout the simulation, although it is
impossible for the infected hosts to be uniformly distributed
amongst the local subnetworks at all times. As we can see
observe from Figure 6, as the variance increases, the worm
propagation becomes slower.
Figure 7 shows the correlation of the initial variance and

the time for the worm to infect 80% of the vulnerable hosts.
We can see that the initial variance of the distribution of the
infected hosts in the local subnetworks has a pronounced effect
on the infection time.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 5 10 15 20 25

Nu
m

be
r o

f i
nf

ec
te

d
ho

st
s

Time t (seconds)

(a)
(b)
(c)
(d)
(e)

Fig. 6. The numbers of infected hosts as functions of time in seconds,
with 1000 infected hosts at time 0. (a) Each of 1000 local networks has one
infected host. (b) Each of 500 local networks has two sends. (c) Each of 200
local networks has fi ve infected hosts. (d) Only One local network has all
1000 seeds. (e) the simple (one-level) epidemic model with a rate of the sum
of the global and local rates

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

 0 1 2 3 4 5 6 7 8 9 10

80
%

 in
fe

ct
io

n
(s

ec
on

ds
)

Deviation

Fig. 7. Time to infect 80% of vulnerable hosts as a function of initial variance
of infected host distribution

D. Effect of Local Scanning Rate
The various experiments in the previous subsections show

that the Two-level DNS Worm is much faster than one-level
worms. This is typically due to much faster propagation rates
in the local subnetworks than across networks.
We now examine the effect of local propagation on the

overall propagation rate of the Two-level DNS-Basic worm.
We use the parameter values from Table II. Figure 8 shows
how the local scanning rate affects the total worm propagation.
It is important to note that the pronounced effect of decreased
local scanning rate is to prolong the initial infection period.
Thus, for example, it takes much longer for the worm with
smaller local scanning rate to infect 20% of the vulnerable
hosts. After that, the infection proceeds pretty smoothly, albeit
still slower than the corresponding worm with a higher local
scanning rate.

VI. RELATED WORK

Computer viruses are not a new phenomenon, and they have
been studied extensively over the last several decades. Cohen

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 5 10 15 20 25

Nu
m

be
r o

f i
nf

ec
te

d
ho

st
s

Time t (seconds)

local rate 1
local rate 2
local rate 5

local rate 10

Fig. 8. Effect of local scanning rates on the overall propagation rates of the
Two-level DNS-Basic Worm

was the first to define and describe computer viruses in their
present form. In [13], he gave a theoretical basis for the spread
of computer viruses. In [10], the authors describe the risk to the
Internet due to the ability of attackers to quickly gain control
of vast numbers of hosts. They argue that controlling a million
hosts can have catastrophic results because of the potential to
launch distributed denial of service attacks and potential access
to sensitive information that is present on those hosts. Their
analysis shows how quickly attackers can compromise hosts
using “dumb” worms and how “better” worms can spread even
faster. The strong analogy between biological and computer
viruses led Kephart et al. to investigate the propagation of
computer viruses based on epidemiological models. In [14],
the authors extend the standard epidemiological model by
placing it on a directed graph, and use a combination of
analysis and simulation to study its behavior. They conclude
that if the rate at which defense mechanisms detect and
remove viruses is sufficiently high, relative to the rate at which
viruses spread, they are adequate for preventing widespread
propagation of viruses.
Since the first Internet-wide worm [8], considerable effort

has gone into preventing worms from exploiting common
software vulnerabilities by using the compiler to inject run-
time safety checks into applications (e.g., [15]), safe languages
and APIs and static (e.g., [16]) or dynamic [17], [18] analysis
tools.
The CodeRed worm [3] was analyzed extensively in [11].

The authors of that work conclude that even though epidemic
models can be used to study the behavior of Internet worms,
they are not accurate enough because they cannot capture
some specific properties of the environment these operate in:
the effect of human countermeasures against worm spreading
(i.e., cleaning, patching, filtering, disconnecting, etc.), and the
slowing down of the worm infection rate due to the worm’s
impact on Internet traffic and infrastructure. They derive a
new general Internet worm model called two-factor worm
model, which they then validate in simulations that match
the observed CodeRed data available to them. Their analysis
seems to be supported by the data on CodeRed propagation in

[19] and [20] (the latter distinguished between different worms
that were active simultaneously active). A similar analysis on
the SQL “Slammer” (Sapphire) worm [4] can be found in [5].
More recent analyses [21] show that it is possible to predict the
overall vulnerable population size using Kalman filters early
in the propagation cycle of a worm, allowing for detection
of a fast-spreading worm when only 1% or 2% of vulnerable
computers on the network have been infected.
CodeRed inspired several countermeasure technologies,

such as La Brea [22], which attempts to slow the growth of
TCP-based worms by accepting connections and then blocking
on them indefinitely, causing the corresponding worm thread
to block. Unfortunately, worms can avoid this mechanisms by
probing and infecting asynchronously. Under the connection-
throttling approach [23], [24], each host restricts the rate at
which connections may be initiated. If adopted universally,
such an approach would reduce the spreading rate of a worm
by up to an order of magnitude, without affecting legitimate
communications.
Wong et al. [25] study the behavior of the SoBig and

MyDoom mass-mailing worms using network packet traces
from the CMU network. They identify DNS servers as a
possible location for slowing down mass-mailing worms.
In constrast, monitoring outgoing mail on SMTP servers is
unlikely to work, since most such worms contain their own
SMTP engines. Similarly, TCP connection throttling [23], [24]
is unlikely to significantly affect mail worm propagation.
[26] describes a design space of worm containment systems

using three parameters: reaction time, containment strategy,
and deployment scenario. The authors use a combination of
analytic modeling and simulation to describe how each of
these design factors impacts the dynamics of a worm epidemic.
Their analysis suggests that there are significant gaps in con-
tainment defense mechanisms that can be employed, and that
considerable more research (and better coordination between
ISPs and other entities) is needed.
[27] presents some very encouraging results for slowing

down the spread of viruses. The authors simulated the prop-
agation of virus infections through certain types of networks,
coupled with partial immunization. Their findings show that
even with low levels of immunization, the infection slows
down significantly.
In the realm of “traditional” computer viruses, most of the

existing anti-virus techniques use a simple signature scanning
approach to locate threats. As new viruses are created, so
do virus signatures. Smarter virus writers use more creative
techniques (e.g., polymorphic viruses) to avoid detection. In
response detection mechanisms become ever more elaborate,
e.g., using partial simulation during program execution. This
has led to co-evolution [28], an ever-escalating arms race
between virus writers and anti-virus developers.
Lin, Ricciardi, and Marzullo study how computer worms

affect the availability of services. In [29], they study the fault
tolerance of multicast protocols under self-propagating virus
attacks.

VII. CONCLUSIONS

In this paper we explored via analysis and simulation
the spread of worms in an IPv6 Internet. We modeled and
analyzed an intelligent worm, that exploits DNS as a means of
identifying potentially vulnerable IP(v6) addresses, and uses
a two-level spreading mechanism to infect other hosts. Our
results demonstrate that by using simple strategies to identify
hosts across the two levels, a DNS-based worm in IPv6 can
spread as fast as a random-scanning worm in an IPv4 world.
This goes against the commonly held belief that IPv6 provides
inherently higher security through its larger address space.
Our model also identifies the directory and naming service
in a network as a potential launching pad for worm attacks
in a network with a sparsely populated address space. We
explored two scenarios, one in which DNS delays are constant,
and another in which DNS delays grow as a function of
the number of infected hosts. Experiments with the latter
scenario indicate that the spread of the worm is influenced
by the processing capacity of the DNS servers. If the spread
of the worm results in query volumes that can overwhelm the
DNS servers, this can cause DNS service unavailability for
legitimate users and induce a denial of service effect. Thus,
to protect future networks, DNS (or any directory) servers are
a natural location to install anomaly detection and defense
capabilities.
Another finding from our analytical model is that the

variance of the fractions of hosts infected in a subnet has a
big impact on the spreading rate. The more spread-out the
worm starts across different subnets, the faster it can infect all
vulnerable hosts. We also assume the worm has an efficient
way to identify valid IP addresses in a local network, by
using techniques like accessing routing protocols, Windows
service location announcements, neighbor discovery caches,
and host configuration and log files. Our results show that
if the second-layer identification mechanism can be hindered,
that further slows down the spread of the two-level DNS worm.
In summary, directory and naming services, which are critical
to the functioning of any network, can also be exploited by
intelligent worms to infect hosts. Thus, future IPv6 networks
need to shore up the security of the naming and directory
services to prevent the spread of such worms.

REFERENCES

[1] J. F. Reynolds, “Helminthiasis of the Internet,” RFC 1135, Internet
Engineering Task Force, Dec. 1989.

[2] “CERT Advisory CA-2001-26: Nimda Worm,” http://www.cert.
org/advisories/CA-2001-26.html, September 2001.

[3] “CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting Buffer
Overflow in IIS Indexing Service DLL,” http://www.cert.org/
advisories/CA-2001-19.html, July 2001.

[4] “Cert Advisory CA-2003-04: MS-SQL Server Worm,” http://www.
cert.org/advisories/CA-2003-04.html, January 2003.

[5] “The Spread of the Sapphire/Slammer Worm,” http://www.
silicondefense.com/research/worms/slammer.php,
February 2003.

[6] Colleen Shannon and David Moore, “The Spread of the Witty Worm,”
IEEE Security & Privacy, vol. 2, no. 4, pp. 46–50, July/August 2004.

[7] S. E. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specifi cation,” RFC 2460, Internet Engineering Task Force, Dec. 1998.

[8] Eugene H. Spafford, “The Internet Worm Program: An Analysis,” Tech.
Rep. CSD-TR-823, Purdue University, 1988.

[9] “Google, other engines hit by worm variant,” http://www.
technewsworld.com/story/35351.html, July 26, 2004.

[10] S. Staniford, V. Paxson, and N. Weaver, “How to Own the Internet
in Your Spare Time,” in Proceedings of the 11 th USENIX Security
Symposium, August 2002, pp. 149–167.

[11] C. C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation
Modeling and Analysis,” in Proceedings of the 9 th ACM Conference
on Computer and Communications Security (CCS), November 2002, pp.
138–147.

[12] Cliff Changchun Zou, Weibo Gong, and Don Towsley, “Code Red Worm
Propagation Modeling and Analysis,” in Proceedings of the 9 th ACM
conference on Computer and Communications security, 2002.

[13] F. Cohen, “Computer Viruses: Theory and Practice,” Computers &
Security, vol. 6, pp. 22–35, February 1987.

[14] Jeffrey O. Kephart, “A Biologically Inspired Immune System for
Computers,” in Artificial Life IV: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems. 1994, pp.
130–139, MIT Press.

[15] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks,” in Proceedings
of the 7th USENIX Security Symposium, January 1998.

[16] Hao Chen, Drew Dean, and David Wagner, “Model Cehcking One
Million Lines of C Code,” in Proceedings of the Network and Distributed
System Security (NDSS) Symposium, February 2004, pp. 171–185.

[17] K. Lhee and S. J. Chapin, “Type-Assisted Dynamic Buffer Overflow
Detection,” in Proceedings of the 11 th USENIX Security Symposium,
August 2002, pp. 81–90.

[18] E. Larson and T. Austin, “High Coverage Detection of Input-Related Se-
curity Faults,” in Proceedings of the 12 th USENIX Security Symposium,
August 2003, pp. 121–136.

[19] D. Moore, C. Shanning, and K. Claffy, “Code-Red: a case study on the
spread and victims of an Internet worm,” in Proceedings of the 2 nd

Internet Measurement Workshop (IMW), November 2002, pp. 273–284.
[20] D. Song, R. Malan, and R. Stone, “A Snapshot of Global Internet Worm

Activity,” Tech. Rep., Arbor Networks, November 2001.
[21] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and

Early Warning for Internet Worms,” in Proceedings of the 10 th ACM
International Conference on Computer and Communications Security
(CCS), October 2003, pp. 190–199.

[22] T. Liston, “Welcome To My Tarpit: The Tactical and Strategic Use
of LaBrea,” http://www.threenorth.com/LaBrea/LaBrea.
txt, 2001.

[23] M. Williamson, “Throttling Viruses: Restricting Propagation to Defeat
Malicious Mobile Code,” Tech. Rep. HPL-2002-172, HP Laboratories
Bristol, 2002.

[24] J. Twycross and M. M. Williamson, “Implementing and testing a virus
throttle,” in Proceedings of the 12 th USENIX Security Symposium,
August 2003, pp. 285–294.

[25] C. Wong, S. Bielski, J. M. McCune, and C. Wang, “A Study of Mass-
Mailing Worms,” in Proceedings of the ACM Workshop on Rapid
Malcode (WORM), October 2004, pp. 1–10.

[26] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet Quarantine:
Requirements for Containing Self-Propagating Code,” in Proceedings
of the IEEE Infocom Conference, April 2003.

[27] C. Wang, J. C. Knight, and M. C. Elder, “On Computer Viral Infection
and the Effect of Immunization,” in Proceedings of the 16 th Annual
Computer Security Applications Conference (ACSAC), 2000, pp. 246–
256.

[28] C. Nachenberg, “Computer Virus - Coevolution,” Communications of
the ACM, vol. 50, no. 1, pp. 46–51, 1997.

[29] M-J Lin, A. Ricciardi, and K. Marzullo, “A New Model for Availability
in the Face of Self-Propagating Attacks,” in Proceedings of the New
Security Paradigms Workshop, November 1998.

