
Encoding for Persistent Sensor Networks

Abhinav Kamra, Vishal Misra∗, Dan Rubenstein†

Dept. of Computer Science
Columbia University

New York, NY
{kamra, misra, danr}@cs.columbia.edu

Jon Feldman

Dept. of IEOR
Columbia University

New York, NY
jonfeld@ieor.columbia.edu

Abstract

1 Introduction and Related Work

Sensor networks consist of a number of sensors spread across a geographical area. Each
sensor has communication capability and some level of intelligence for signal processing
and networking of data. Each sensor node in the network routinely ’senses’ and stores
data from its immediate environment. An important requirement of the sensor network
is that the collected data be disseminated to the proper end users. In some cases, there
are fairly strict requirements on this communication. For example, the detection of an
intruder in a surveillance network should be immediately communicated to the police
authorities. Each sensor node also has some storage capacity to store the collected data
or to assemble the data prior to communicating it to another node.

Sensor networks are commonly deployed in environments where the various nodes
collect data and the whole network acts as a distributed database. The popular approach
to retrieving data in sensor networks is for a user or the owner of the sensor network to
query an individual node or a group of nodes for information collected in the region. The
desired data can then be routed from the source nodes to the querying node. Depending
on the amount of data fusion to be performed, it may not be feasible to transmit a
large amount of data across the network. Potentially, there can be a large latency in
getting the required data out of a multitude of source nodes scattered randomly across
the network due to the multi-hop routing phase to be performed after the query. In
general, collecting data from multiple nodes in the sensor network at query time may
introduce latency that may not be acceptable for certain applications. Additionally, it
may also be unreliable since typical sensor nodes are wireless nodes with limited storage,
bandwidth and computational power. Furthermore, they are prone to “failure”, by going
out of wireless range, interference, running out of battery etc. When a sensor node fails,
the data it was storing is lost and hence the required data may not even be available at
a subset of the sensor nodes.

A neat solution is for various local sink nodes to collect the data from a given area. A
query may be directed to the sink node nearest to the desired location which has all the

∗Also with the Department of Electrical Engineering
†Also with the Department of Electrical Engineering

required data to compute the result of the query and respond directly to the querying
node. Even if all the data stored at the sensor nodes in the area has not been collected
at the sink node, it can compute the query results as best as it can from the data it has.
Due to the unreliability of the sensor nodes and the communication links between them,
the sink node needs to collect the data from the nodes in the area as fast as possible.
Since the underlying topology of the sensor network may not allow every node to be
connected to every other node, sensor nodes in the network are required to store data
from other nodes to route data through the network towards the sink node. This may
also be beneficial in a wireless sensor network where it is more energy efficient for a
sensor node to forward data only to nearby nodes and have a multi-hop communication
to the sink instead of forwarding directly to the destination using higher power. Since
the sensor nodes or the entire network may fail at any time, it is important to have the
sink collect as much data as it can at any given time.

This work is accordingly motivated at trying to maximize the information content
that a sink can collect at any time. We show how a collection of sensor nodes connected
in any topology, not knowing where the sink is located, can use their limited storage and
bandwidth to exchange data such that the sink node, which is connected directly to 1
or more of the sensor nodes, can accumulate all the data collected by the sensor nodes
as fast as possible. At any given time, if the sensor network fails completely or partially,
the sink will have as much data as possible to respond to the queries.

We consider large sensor networks with individual nodes severely constrained by stor-
age memory, computational power and network bandwidth available to communicate
with neighbor nodes. In particular we assume a sensor network with the individual
nodes connected in a certain underlying topology such that each node can only com-
municate directly with its neighbors. Each node ’senses’ some data from its immediate
environment and generates a data unit of a fixed size. Each node has a fixed storage size
where it can store 1 or more data units. The idea is for the sensor nodes to exchange
their data units at every time step such that the sink node can accumulate all of them
eventually. The sink node is attached to and hence collects data from one or more of the
sensor nodes. We assume a “Pull” based mechanism to exchange data. In particular,
a node selects a sender node from one of its neighbors to receive data from. Both the
sending and the receiving nodes choose one of the data units from their respective limited
storage and exchange the selected data units.

It has been shown [1, 2] that in distributed storage networks, it is beneficial to store
encoded symbols of data units instead of the original data. The work of Yeung et. al.
[3] also gives the idea that with limited storage, coding may be required to maximize the
information content. They further show [4] that Linear Coding suffices. That is, it is
sufficient to store linear combinations of the data as the encoded symbols.

The benefits of storing combinations of data instead of original data has been studied
in various works [5, 6]. Traditional error-correcting erasure codes can also be used to
achieve the goal of encoding data such that if some of the encoding symbols are lost,
data can still be recovered. Reed-Solomon codes [7] are block erasure codes that have
been traditionally used for error correction. Tornado codes [8] and more recently LT codes
[9] are erasure codes that require slightly more encoded symbols to recover the data but
have much faster encoding/decoding. These codes focus on the problem of choosing an
encoding such that “all” the data can be recovered using a minimum number of encoded
symbols.

The above mentioned encoding protocols, in most cases cannot directly be applied

and in other cases are not particularly well suited to our distributed setting to achieve the
goal of accumulating the maximum possible information at the sink at any given time.
Accordingly, we design a distributed protocol of information encoding and communication
which is well suited to enable substantial amount of original data to be recovered even
from a small number of encoded symbols.

The rest of the paper is organized as follows: In Section 2, we mathematically for-
mulate the problem and give some definitions. In Section 3 we prove some results and
design an approximately optimal degree distribution.

2 Problem Formulation

Our network model consists of a sensor network with N nodes, connected in a certain
topology, each with a fixed limited storage capacity. Each node ni generates or senses
some data from its immediate environment and generates a fixed size data xi which we
call a “data unit”. Since the aim is to spread the data in the network so that the sink
node is able to accumulate as much information as is possible at any given time, and
since we have determined that data should be encoded for maximum information transfer
to the sink, each node stores encoded symbols of data instead of the original data units.
These encoded symbols are formed by bitwise XOR-ing a subset of the N data units
x1, . . . , xN as is done in LT-codes. The number of data units which are XOR-ed to form
a symbol is known as the degree of the symbol. For example, x1⊕ x3⊕ x6 is an encoded
symbol of degree 3. These encoded symbols are formed according to a degree probability
distribution π̄ such that an encoded symbol is of degree i with probability πi. The i data
units that form the symbol are chosen uniformly randomly from the N data units.

Each sensor node, at every time step, exchanges one of the stored symbols with one
of its neighbors. Lets suppose the sink is attached to exactly one of the sensor nodes and
hence observes the new symbol which this node receives at every time unit. The sink
therefore, accumulates one encoded symbol per unit time. Using a decoding procedure
the same as one used in LT-codes, the sink is able to “recover” some of the original data
units from the accumulated encoded symbols. The symbols which cannot be decoded at
any time due to insufficient information to decode them are stored for future decoding.
The decoding algorithm is explained in Definition 2.4.

In practice, the content and spread of encoded symbols will depend on the particular
data exchange protocol between the nodes and the topology of the network so that
the sensor nodes are unable to construct encoded symbols conforming to the degree
distribution π̄ according to which they are supposed to be constructed. But for the
purpose of analysis, we assume that the encoded symbols accumulated at the sink have
been constructed according to some fixed degree distribution π̄. Using these abstractions
and assumptions, we state the following computational problem:

Problem 2.1 There are N data units x1, . . . , xN . Given that the sink receives one en-
coded symbol every time step, what is the degree distribution π̄ according to which the
symbols should be constructed such the maximum number of data units can be decoded at
the sink at any time. The sink uses the decoder D as described in Definition 2.4.

We want to receive symbols at the sink node such that at any time, the maximum
possible number of data units can be recovered so that if the sensor network completely
or partially fails at any time, we have recovered as much data as possible. It is quite

possible that there is no degree distribution π̄ according to which the symbols should be
constructed such that it maximizes the number of data units can be decoded at the sink
at “all” times. Hence, we give an alternate definition of the optimal degree distribution
which can maximize the number of data units that can be recovered at a given time.

Definition 2.2 If k encoded symbols are received at the sink node then the degree distri-
bution π̄ is optimal for the given k if it maximizes the number of data units that can be
recovered from these k encoded symbols. The k symbols have been constructed according
to the degree distribution π̄.

We now state some definitions and describe how the decoding algorithm at the sink
node works.

Definition 2.3 Given a set X of data units and an encoded symbol s of degree d, the
distance of s from set X, dist(s,X), is the number of data units that form the symbol s
and are not present in X.

It is easy to see that if X is the set of recovered data units, then a symbol s can be
used to recover a new data unit if and only if dist(s,X) is 1 since all but one of the data
units which are XOR-ed to form the symbol s have already been recovered, so they can be
“subtracted” from s to recover the additional data unit. The decoder we describe below
uses this principal to recover data units from the set of received symbols s1, s2, . . . , sk.

Definition 2.4 The iterative decoder D works as follows. Initially the set X of recovered
data units is empty.

1. Decode all degree 1 symbols and add them to set X. This is trivial since the degree 1
symbols are the same as the original data units. So, initially X is the set of distinct
data units contained in all degree 1 symbols.

2. From the remaining symbols, choose a symbol s such that dist(s,X) is the minimum.

3. If dist(s,X) = 0, throw away this symbol as a redundant or duplicate symbol.

4. If dist(s,X) = 1, decode a new data unit and add it to X. Goto Step 2.

5. If dist(s, X) > 1, stop. The remaining symbols have distance greater than 1 from
X and hence cannot be decoded without additional information.

This is the decoder used by Tornado and LT codes. It may not decode all possible
data units from the given encoded symbols. We can recover more using a Gaussian
elimination method. But we will use this decoder since its much faster compared to
Gaussian elimination.

Consider another decoder F which given a F ixed sequence of encoded symbols s′1, s
′
2, . . . , s

′
k,

works as follows. Initially the set X ′ of recovered symbols is empty.

1. Let i = 1.

2. Choose symbol si. If it has a distance 1 from current set X ′, then decode a new
data unit and add to set X ′.

3. If si has distance 0 or more than 1, throw it away.

4. Increment i and go to step 2 until all symbols have been considered.

In a sense, the decoder F is more constrained than the decoder D since it has to
decode the symbols in a fixed order only and it also throws away all symbols it considers
which cannot be decoded at that point but might have been useful at a later point in the
decoding process.

The following result holds:

Lemma 2.5 Given a sequence of symbols s1, s2, . . . , sk, the number of data units decoder
D can recover from this set of symbols is at least as much as that recovered by decoder F
given any fixed sequence s′1, s

′
2, . . . , s

′
k which is a permutation of the symbols s1, s2, . . . , sk.

Proof: Let D(s1, s2, . . . , sk) be the number of symbols recovered by decoder D and
F (s′1, s

′
2, . . . , s

′
k) be the number of symbols recovered by decoder F . We will prove by

induction on the number of symbols that D(s1, s2, . . . , sk) ≥ F (s′1, s
′
2, . . . , s

′
k).

• [Basis Step: k=1]: Clearly, D(s1) = F (s′1). Specifically, if s1 is of degree 1,
then D(s1) = F (s′1) = 1 and D(s1) = F (s′1) = 0 otherwise. Hence for k = 1,
D(s1, s2, . . . , sk) ≥ F (s′1, s

′
2, . . . , s

′
k).

• [Induction Hypothesis]: D(s1, s2, . . . , sk−1) ≥ F (s′1, s
′
2, . . . , s

′
k−1).

• [Inductive Step]: There are two cases:

1. [Degree of s′1 > 1]: This means that F cannot decode s′1. Hence, F (s′1, s
′
2, . . . , s

′
k) =

F (s′2, s
′
3, . . . , s

′
k). Using the induction step we have, D(s2, . . . , sk) ≥ F (s′2, . . . , s

′
k).

Hence, D(s1, s2, . . . , sk) ≥ D(s2, . . . , sk) ≥ F (s′1, s
′
2, . . . , s

′
k).

2. [Degree of s′1 = 1]: In this case decoder F decodes s′1. Hence, F (s′1, s
′
2, . . . , s

′
k) =

1 + F (s′2, s
′
3, . . . , s

′
k).

But since s1 is of degree 1, decoder D also decodes s1 in the first step when
it decodes all degree 1 symbols. Hence, WLOG we can assume s1 = s′1.
Therefore, D(s1, s2, . . . , sk) = 1 + D(s2, s3, . . . , sk).

Using the induction hypothesis, we have D(s1, s2, . . . , sk) = F (s′1, s
′
2, . . . , s

′
k).

3 Designing Optimal Degree Distributions for Iter-

ative Decoding

In Section 3.1, we prove some theorems which are critical in designing a close to optimal
degree distribution in Section 3.2.

3.1 Main Results

Define decoder S as follows which given a set of encoded symbols s1, s2, . . . , sk, works as
follows: Initially the set X of recovered symbols is empty.

1. Sort the symbols in non-decreasing order of their degrees to get the sequence
s′1, s

′
2, . . . , s

′
k.

2. Run decoder F on the sequence s′1, s
′
2, . . . , s

′
k.

Decoder S is essentially a special case of decoder F which works on the sequence of
symbols sorted in non-decreasing order of their degrees.

We now prove some properties of decoder S .

Lemma 3.1 Let ρr,d be the probability of successful decoding of a degree d symbol when
r data units have already been recovered. This is the probability that the degree d sym-
bols contains d − 1 components which are contained in the r recovered data units and 1

component which has not been recovered. Then, ρr,d =
rCd−1(N − r)

NCd

.

Proof: The d component data units of the degree d symbol are assumed to be
distinct and uniformly chosen from the N data units. The number of ways of choosing a
d degree symbol such that the component data units are distinct and are spread uniformly
randomly is NCd. There are r recovered data units and N − r unrecovered data units.
For a degree d symbol, the number of ways of choosing 1 component from the N − r
unrecovered symbols is N−rC1. Similarly, the number of ways of choosing d−1 components
from the set of r recovered symbols is rCd−1.

Hence the probability that for a degree d symbol, d − 1 components are from the
set of r recovered symbols and 1 from the set of N − r unrecovered symbols is ρr,d =
rCd−1(N − r)

NCd

.

Lemma 3.2 When using decoder S, to recover more than r data units, the optimal degree
distribution contains symbols of degree j or more only if ∀1≤i<j[ρr,i < ρr,j].

Proof: Consider two sets of symbols sorted in non-decreasing order of their degrees
such that the first symbol they differ in is the kth symbol, i.e., ∀1≤<i<ksi = s′i but sk 6= s′k.

Suppose s′k is of degree j while sk is of a smaller degree. Further suppose that after
decoding the first k−1 symbols, r data units have been recovered when using decoder S .
This the case for both sets of sequences since they are identical in the first k−1 symbols.

The probability of successful decoding of the kth symbol for the first sequence is ρr,i

for some i < j, while that for the second sequence is ρr,j . It is easy to see that all the
symbols s1, . . . , sk−1 are of degrees smaller than j since sk is of degree smaller than j and
the symbols are sorted in non-decreasing order of degrees.

Hence, to recover more than r data units, the optimal degree distribution contains
symbols of degree j only if ∀1≤i<j[ρr,i < ρr,j].

Now we consider some properties of decoder D , which will be used in our sensor
network protocols.

Let

R1 =
N − 1

2
, R2 =

2N − 1

3
, . . . , Ri =

iN − 1

i + 1
∀i∈[1,N−1] (1)

and

K1 =
R1−1∑

i=0

N

N − i
(2)

Theorem 3.3 To recover r data units, such that r ≤ R1 =
N − 1

2
, the optimal degree

distribution has symbols of degree 1 only when using decoder D

Proof: This follows from Lemma 3.2.
It is easy to see that in the beginning, decoder D behaves the same as decoder S since

both decoders decode degree 1 symbols before decoding any other degree symbols. Also,
since decoder S is a special case of decoder F , using Lemma 2.5, we see that decoder D
is provably better than decoder S when given the same set of symbols.

According to Lemma 3.2, decoder S uses only degree 1 symbols to recover the first r
data units as long as ρr,1 > ρr,2. This is true for r ≤ N−1

2
.

Hence to recover the first r = N−1
2

data units, the optimal degree distribution of
symbols when using decoder S has only degree 1 symbols.

Since decoder D works the same way as decoder S when the set of symbols has only
degree 1 symbols coupled with the fact that decoder D is provably better than decoder
S , it follows that the optimal degree distribution for decoder D to recover r (r ≤ N−1

2
),

consists of degree 1 symbols only.

Theorem 3.4 To recover R1 =
N − 1

2
data units, the expected number of encoded sym-

bols required is K1 =
R1−1∑

i=0

N

N − i
when using decoder D.

Proof: From Theorem 3.3, the optimal degree distribution will contain only degree
1 symbols to recover the first R1 = N−1

2
data units. Since all the encoded symbols have

to be degree 1, this becomes the well studied Coupon Collector’s Problem where to get

the first r distinct coupons, one needs to collect
r−1∑

i=0

N

N − i
coupons.

Hence the expected number of symbols required is K1 which is given by Equation 2.

If s1, s2, . . . , sk is a set of k encoded symbols, then D(s1, . . . , sk) is the number of data
units that can be recovered from these symbols using decoder D .

Theorems 3.3 and 3.4 show that if most of the network nodes fail and a small amount
of the data survives, then not using any coding is the best way to recover maximum
number of data units. We generalize these proofs in theorems 3.6 and 3.7. But before
that we prove a lemma which is useful for the theorems.

Lemma 3.5 If X of size r is the set of symbols recovered by decoder D at any point
during its execution and a1, . . . , ak are the remaining symbols to be considered then the
output of decoder D, D(X, a1, . . . , ak) is at least as much as D(X ′, a1, . . . , ak) if X ′ is
another set of recovered data units but of a smaller size

Proof: We will prove this by induction on k.

• [Basis Step: k = 0]: Since ‖X‖ > ‖X ′‖, trivially D(X) ≥ D(X ′).

• [Induction Hypothesis]: D(X, a1, . . . , ak−1) ≥ D(X ′, a1, . . . , ak−1) for ‖X‖ > ‖X ′‖
• [Inductive Step:] Let Xk−1 = r be the set of recovered data units after decoding

a1, . . . , ak−1 starting with X. Similarly, let X ′
k−1 = r′ be the set of recovered data

units after decoding a1, . . . , ak−1 starting with X ′. According to the induction
hypothesis, ‖Xk−1‖ > ‖X ′

k−1‖ which means r ≥ 1 + r′ since both r and r′ are
integral.

D(X, a1, . . . , ak) = ‖Xk−1‖ + pak
where pak

is the probability that ak has distance
1 from set Xk−1. Similarly, D(X ′, a1, . . . , ak) = ‖X ′

k−1‖ + p′ak
where p′ak

is the
probability that ak has distance 1 from set X ′

k−1.

Hence,

D(X, a1, . . . , ak)−D(X ′, a1, . . . , ak) = r + pak
− r′ − p′ak

≥ 1 + pak
− p′ak

≥ 0

Theorem 3.6 To recover r data units such that r ≤ Rj =
jN − 1

j + 1
, the optimal degree

distribution has symbols of degree j or less only

Proof: We will prove this by contradiction. Suppose there is an optimal degree

distribution π̄opt to recover r data units such that
j∑

i=1

πopt
i < 1. Consider a set of k

encoded symbols s1, s2, . . . , sk according to this degree distribution such that there are 1
or more symbols of degrees greater than j. WLOG, lets assume s1, s2, . . . , sk is the order
in which decoder D considers the symbols while decoding.

The expected number of data units recovered using decoder D is given by D(s1, s2, . . . , sk) ≤
Rj according to the problem statement. Since there are symbols of degrees greater
than j, let sl be the first symbol in this sequence of degree greater than j, that is
degree(sl) = d > j.

Let X be the set of data units recovered after decoding symbols s1, . . . , sl−1. Let
r = ‖X‖. The output of the first l symbols is given by D(s1, s2, . . . , sl) = r + psl

where
psl

is the probability that symbol sl of degree d > j has a distance 1 from the set X.
Again, according to the problem statement r ≤ Rj.

If we replace symbol sl of degree d > j with symbol s′l of degree j and decode the
symbols using the decoder F then the output of decoder F given this fixed sequence of
symbols s1, s2, . . . , sl−1, s

′
l is given by F (s1, s2, . . . , sl−1, s

′
l) = r + ps′

l
.

Since r ≤ Rj = jN−1
j+1

, psl
=

rCd−1(N−r)
NCd

and ps′l =
rCj−1(N−r)

NCj
, it is easy to see that

ps′
l
> psl

because d > j and r ≤ Rj.
Hence, F (s1, s2, . . . , sl−1, s

′
l) > D(s1, s2, . . . , sl). Using Lemma 2.5, we get D(s1, s2, . . . , sl−1, s

′
l) >

D(s1, s2, . . . , sl). Hence the output of decoder D increases by replacing a symbol of degree
greater than j by a symbol of degree j.

Now, using this result and Lemma 3.5 we get D(s1, . . . , sl−1, s
′
l, sl+1, . . . , sk) is at least

as much as D(s1, s2, . . . , sl, sl+1, . . . , sk).
Hence by replacing higher degree symbols with symbols of degree j, the output of

decoder D increases. Therefore, the optimal degree distribution to recover r ≤ Rj data
units has only symbols of degree j or less.

Theorem 3.7 To recover Rj =
jN − 1

j + 1
data units, the expected number of encoded

symbols required is at most Kj ≤ Kj−1 +
Rj−1∑

i=Rj−1

NCj

iCj−1(N − i)

Proof: We will prove this by induction on j.

• [Basis Step: j = 1]: Using Theorem 3.4, to recover R1 =
N − 1

2
data units, the

expected number of encoded symbols required is K1 =

N
2
−1∑

i=0

N

N − i

• [Induction Hypothesis]: To recover Rj−1 =
(j − 1)N − 1

j
data units, the expected

number of encoded symbols required is at most Kj−1.

• [Inductive Step:] Let X of size ‖X‖ = Rj−1 be the set of data units recovered at
a point during the execution of decoder D . According to Theorem 3.6, the optimal
degree distribution will have symbols of degrees j − 1 or less. Furthermore, to
recover the remaining Rj−Rj−1 symbols, the optimal degree distribution will have
symbols of degrees j or less.

A degree d symbol has a distance of 1 from the set X of size r with probability
rCd−1(N − r)

NCd

. For Rj−1 ≤ r < Rj, this probability is maximized if the symbols are

of degree j. Hence, it is best to use symbols of degree j to recover the remaining
Rj −Rj−1 symbols.

When r data units, such that Rj−1 ≤ r < Rj have been recovered, the next degree
j symbol will have distance 1 from the set of recovered data units with probability

p =
rCj−1(N − r)

NCj

. If in the worst case, we do not use the symbol later if it turns

out to be of distance 2 or more, then the expected number of symbols required to

recover the next data unit is 1.p + 2.p(1− p) + 3.p(1− p)2 . . . =
1

p
.

Hence, in the worst case, the expected number of degree j symbols required to

recover Rj −Rj−1 data units is
Rj−1∑

i=Rj−1

rCj−1(N − r)
NCj

and hence

Kj ≤ Kj−1 +
Rj−1∑

i=Rj−1

NCj

iCj−1(N − i)

3.2 A Close to Optimal Degree Distribution

According to the analysis in section 3.1, we observe that it is best to use only degree
1 symbols to recover the first R1 data units, only degree 2 symbols to recover the next
R2−R1 data units and so on. Furthermore, an expected number of K1 encoded symbols
are required to recover R1 data units, an expected maximum K2 symbols are required to
recover the next R2 −R1 data units and so on.

This defines a natural probability distribution on the degrees of the encoded symbols.
In particular, if we have a total of k encoded symbols, we should have K1 degree 1
symbols so that we can recover an expected R1 data units from them, K2 −K1 degree
2 symbols so that we can recover an expected R2 − R1 data units from them and so on

as long as some of k symbols are remaining. A close to optimal degree distribution can
thus be defined as

π̄∗(k) : π∗i = max(0,min(
Ki −Ki−1

k
,
k −Ki−1

k
)) (3)

Note that the value of K1 in Theorem 3.4 is exact whereas those of Ki:i>1 in Theorem
3.7 are only upper bounds. Hence the degree distribution π̄∗ is an approximation to the
optimal distribution.

4 At-Sink Simulation Model

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

A
ve

ra
ge

 r
ec

ov
er

ed
 d

at
a

un
its

k

Average Output of various degree distributions for At-Sink decoding

Close to Optimal
UnEncoded

Soliton-k
Robust-Soliton-k

min(k, N)

Figure 1: Comparing the performance of various degree distributions. N is chosen to be
128

Equation 3 gives an approximately optimal degree distribution to encode the symbols
so as to recover as many data units as possible at the sink at any given time. Here we
evaluate how a communication protocol based on this degree distribution performs in
terms of number of data units that can be recovered at the sink at any given time.

To simulate the protocol, we generate k symbols independently according to the
degree distribution π̄∗(k). We assume that these are the k symbols which are received at
the sink node at time k (since the sink receives one encoded symbol at each time step).
The sink can also be attached to more than one sensor nodes, and hence receiving more
than one encoded symbol per time step. It is easy to model but for the sake of clarity,
we stick with the one symbol per unit time protocol. We then use the decoder algorithm
D and see how many data units can be recovered using these k encoded symbols. This
is repeated for different k values to observe how the protocol performs.

We call this the At-Sink simulation model since we are generating the k symbols
independently according to some degree distribution and assuming that these are the
symbols received at the sink. In a more practical protocol, the symbols received at the
sink may not exactly follow the distribution using which they are constructed at the
nodes because of the underlying topology of the sensor network and other factors such
as storage limitations at the nodes.

We compare the performance of the degree distribution π̄∗(k) with the un-encoded
distribution where all the symbols are of degree 1 as well as some other well known degree
distributions such as Soliton and Robust Soliton.

The degree distribution Soliton-α is defined as

π̄S,α :

πS,α
1 =

1

α

πS,α
i∈[2,α] =

1

i(i− 1)

πS,α
i∈[α+1,N] = 0 (4)

This distribution and a slightly modified form which performs better in practice and
known as the Robust Soliton are discussed in [9]. The original Soliton and Robust
Soliton distributions are fixed distributions which depend on N , the number of data units.
We define Soliton-α and Robust-Soliton-α degree distributions as the original Soliton
and Robust Soliton distributions but after substituting the parameter α for N in their
specifications. In this manner these distributions vary with changing α. This is useful
because Soliton and Robust Soliton distributions are essentially designed for recovering
all N data units with the minimum symbols possible and not for partial recovery from
the surviving symbols as is done by π̄∗(k). Hence to adapt these distributions for the
task of recovering data units from a very small number of symbols, we construct modified
forms of them which are Soliton-α and Robust-Soliton-α. The values of Robust Soliton
parameters c and δ are chosen to be 0.9 and 0.1 respectively as suggested by the authors.

Figure 1 shows the average number of data units recovered using decoder D for varying
k values and different degree distributions. We compare the approximately optimal degree
distribution π̄∗(k) with Soliton-k and Robust-Soliton-k distributions. We also compare
with the case when no coding is performed. N is chosen as 128. For nearly all values of
k, π̄∗(k) performs very well especially for low values of k which means that it is a good
distribution to use if the network failures tend to be large. The good performance of the
No-Coding protocol for small k values confirms the fact that if the number of symbols is
small, they should be degree 1 to ensure recovery of maximal data units. Robust-Soliton-
k distribution performs as well as the UnEncoded. Soliton-k does not perform very well
for small k values since it assigns high probabilities to symbols of higher degrees.

References

[1] S. Acedanski, S. Deb, M. Medard and R. Koetter, “How Good is Random Linear
Coding Based Distributed Networked Storage,” in Workshop on Network Coding,
Theory and Applications, 2005.

[2] A. G. Dimakis, V. Prabhakaran and K. Ramchandran, “Ubiquitous Acess to Dis-
tributed Data in Large-Scale Sensor Networks through Decentralized Erasure Codes,”
in Symposium on Information Processing in Sensor Networks, 2005.

[3] R. Ahlswede, N. Cai, S. Y. R. Li and R. W. Yeung, “Network Information Flow,” in
IEEE Transactions on Information Theory, vol. 46, 2000, pp. 1004–1016.

[4] N. Cai, S. Y. R. Li and R. W. Yeung, “Linear Network Coding,” in IEEE Transactions
on Information Theory, vol. 49, no. 2, 2003, pp. 371–381.

[5] R. Koetter and M. Medard, “An Algebraic Approach to Network Coding,” in
ACM/IEEE Transactions on Networking, vol. 11, no. 5, 2003, pp. 782–795.

[6] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale Content Distribu-
tion,” in Proceedings of INFOCOM, 2005.

[7] Lin and Costello, Error Control Coding: Fundamentals and Applications, 1983.

[8] M. Luby, M. Mitzenmacher, M. A. Shokrollahi and D. Spielman, “Efficient Erasure
Correcting Codes,” in IEEE Transactions on Information Theory, vol. 47, no. 2, 2001,
pp. 569–584.

[9] M. Luby, “LT Codes,” in Symposium on Foundations of Computer Science, 2002.

