Impact of Load Sharing on Provisioning Services
with Consistency Reguirements

Danid Villda* Vishal Misral

* Dept. of Electrical Engineering
Columbia University
New York, NY 10027
{advillela,danr} @ee.columbia.edu

Abstract—

Providers of services such as online auctions must provision servers to
respond quickly to users’ requests. Assigning each service to its own set
of servers can result in some servers being overloaded while others remain
underloaded. In contrast, load sharing spreads all services across the sets
of servers, allowing each request to each be serviced from a choice of multi-
ple servers, relieving the busiest servers. Sharing arbitrarily across servers,
however, can be costly because of the need to maintain consistency of the
service across these servers. In this work we model servicing systems with
consistency requirements and analyze the impact of load sharing. Our anal-
ysis of greedy algorithms provides upper bounds of the response times, and
shows that greedy algorithms can reduce the busiest server’s intensity to be
very close to the average service intensity - a near-optimal result. We also
reveal a surprising result that, when servers’ average loads are equal but
fluctuate over time, wthe average response time can be reduced by sharing
load.

|. INTRODUCTION

The success of various online services such as auctioning sys-
tems (e.g, eBay) and e-Commerce systems (e.g, Amazon.com)
hinges on their ability to respond quickly to user requests, re-
gardless of demand. Hence, the providers of these kinds of ser-
vices must provision their servers so that response times remain
low even wheen demand is high. The total demand at a serving
system is comprised of an aggregate of demands from multiple
servicing instances. For example, an auction site offers several
auctions simultaneously. Each auction is an individual serving
instance and has its own individual demand that fluctuates over
time. If the auction is served by a single server, when the de-
mand spikes, the response time will drop.

This paper investigates the use of load sharing across servers.
When servers load share, a single servicing instance can be
served by multiple servers, and each server can simultaneously
host (part of) several different instances. Load sharing permits
a more equitable distribution of load across servers. However,
there is a consistency cost: the set of servers hosting a common
instance must keep certain information that they share consis-
tent at all times. For example, an auction site may partition the
participants of a popular auction across servers, such that each
server is responsible for receiving bids from the participants and
informing them of the current highest bid. To do this, the servers

This material was supported in part by the National Science Foundation under
CAREER Award No. ANI-0133829 and NSF ITR-0325495 Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science
Foundation.

 Dept. of Computer Science
Columbia University
New York, NY 10027
misra@cs.columbia.edu

Dan Rubenstein* Sambit Sahut

! Network Software and Servers
IBM T. J. Watson Research Center
Hawthorne, NY 10532
sambits@us.ibm.com

must keep a consistent view of the current highest bid. If an
instance is replicated over too many servers, then the cost of
maintaining consistency can outweigh the savings gained from
distributing the load of requests. Our goal is to find a solution
that minimizes the load placed on the heaviest loaded server.

In actual servicing systems, server infrastructures are com-
prised of tens to tens of thousands of servers [?,?,?]. Load shar-
ing is indeed applied to these server infrastructures. However,
to the best of our knowledge, the load sharing strategy is ad hoc.
Hence, investigating how servicing instances should be assigned
to servers to reduce response times still requires attention. The
fundamental questions that we address in this work are:

« How can load sharing reduce the response times for services
which, when distributed across multiple servers, must be kept
consistent?

« Can load sharing reduce response times when instance’s de-
mands are already distributed such that loads across servers are
approximately equal? And, if it can, what should be taken into
account to determine whether load sharing should be applied in
that case?

We study simple, greedy algorithms that determine how load
is to be “shared” in a serving system where consistency must be
maintained and there is a cost for this maintenance. We model
this class of servicing systems and analyze the intensity at the
busiest server. We propose a greedy algorithm that takes as in-
put the set of servers and the set of instances and outputs an
assignment of the instances to the servers. We show analytically
that the greedy algorithm yields an allocation with a maximum
serving intensity that is within a constant factor of the optimal
maximum intensity. We then investigate a number of cases em-
pirically that suggest these algorithms produce configurations in
which the maximum intensity is close to the initial average de-
mand, and is usually significantly smaller than the maximum
intensity in a configuration without load sharing, when each in-
stance is served by a single server. This is especially important
because the problem is shown to be NP-hard.

Next, we extend our model for the case in which instances’
time-average demands are equal, but fluctuate independently
over small time scales. One might posit that load sharing of-
fers no benefit since average demands are equal to begin with,
and imposing load sharing would add a consistency cost. Our
results show, however, that in fact, average response times can
still be reduced by load sharing because the variance of loads at

servers is reduced.

The remainder of the paper is structured as follows. In Sec-
tion 11, we overview related work. In Section 111, we describe
our model for servicing systems in which demands fluctuate at
large time scales. In Section 1V, we formally define two greedy
algorithms and analyze their performance. In Section V, we de-
scribe an extension of the model that takes into account fluctu-
ations of demands that occur in small time scales. We conclude
in Section VI.

Il. RELATED WORK

The objective in the classical scheduling problem [?] is to
minimize the completion time for running a set of tasks whose
running times are known by distributing them over a set of ma-
chines. This problem is related to our problem, by mapping
loads of servicing instances to running times and machines to
servers. * However, in many systems, however, tasks cannot be
fragmented, or if they can, there is a cost for fragmenting them.
Previous algorithmic approaches for task scheduling across ma-
chines [?,7?,?,?], for provisioning server loads in [?], and for
traffic engineering using interior gateway routing protocols [?]
do not consider fragmentation costs in their models. The opti-
mization approaches in [?,?,?] and the performance study in [?]
also differ from our work in this same fundamental aspect.

The goals and assumptions in previous work that study sys-
tems that require consistency when provisioning serving re-
sources differ from ours. For instance, the work in [?] describes
the problem of minimizing the number of copies in a caching
system. In [?], Coffman et al. study the number of replications
of database entries to maximize the fraction of server processing
needed to service only queries as a function of the arrival rate of
database updates. Our goal to minimize the maximum inten-
sity at servers is then clearly different than the goals in [?] and
[?]. The works in [?,?,?,?] present queueing-theoretic models
to describe the dependencies in a set of database queries by the
constraints that a query must wait for write tasks to be finished.
In our work, consistency is taken into account without focus-
ing on timing issues such as this waiting constraint for database
queries. Because of these assumptions, these models do not suit
our purposes here.

Finally, current provisioning experiences for representative
large—scale services are reported in [?, ?, ?] that describe server
architectures of commercial services employing from hundreds
to thousands of servers for applications such as search engines
(Google [?] and Hotbot [?]) or online massive games [?]. Load
sharing, among other features, is then cited for scalability, but
none of these works evaluates its impact.

I1l. MODEL AND OBJECTIVES

Our goal is to investigate an alternative to the provisioning
policy in which any request can only be serviced by a single
server. In this section, we assume that the service demand for
each servicing instance is constant, or at least fluctuates at a rate
lower than the measurement rate used by the service provider
to give estimates of those demands. This assumption is not un-
reasonable for many services whose demands are correlated to

LOur problem is also related to bin packing, since scheduling is related to bin
packing [?].

routine daily activities that are well known [?] (e.g., consistent
peaks at evenings) and typically a peak period may last for a
long time. Another example is that of a ticketing system de-
mand for booking tickets can be quite high for an hour and slows
down afterwards. In Section V, we present an extension of the
model that deals with the case that demand fluctuates signifi-
cantly within a measurement interval.

A. Modeling a servicing system

We model a provider as a system consisting of a set of m
servers, S = {s1, 82, ..., Sm }, that manage the servicing of m
servicing instances in the set 4 = {a1,as,...,a,}. Examples
for such service instances include item auctions (auctioning sys-
tem), multiple online games, or item sales (e-commerce).

Requests for instances are classified into two classes of re-
quests. A first class of requests, read requests, consists of re-
quests that access content on the server without altering it. In
the online auction example, a read request can be the descrip-
tion of an auctioned item or the current highest existing bid. A
second class of requests, write requests, consists of requests that
alter the content being served. Examples are a seller submit-
ting new information on an auctioning item, or a buyer sub-
mitting a bid. Each instance’s demand can be described by
an intensity v(a;) = ~y; due to read requests plus an intensity
v(a;) = v; = fiy(a;), 1 <i <1, due to write requests.? A con-
sistency requirement is imposed for every instance a; such that
a modification to a; at one server must be immediately applied
at every server servicing that instance.

When load sharing is implemented, each service instance a;
must be fragmented into z(a;) = z; fragments. Then, these
fragments must be assigned to a subset of the servers in the sys-
tem. Note that when load sharing is not implemented, we say
that a static provisioning policy is used, and Va; € A, z; = 1.

When fragments sizes can be arbitrary, we say the fragmenta-
tion is fluid, and an assignment can be viewed as the “pouring”
of an instance into each server. We also consider the case where
an instance must be split into equal size fragments. Hence, the
intensity due to instance a;’s read requests at each of the servers
is 7y;/zi, since z; is the number of servers servicing instance a;
and intensities are divided into equal portions.

A server’s intensity describes how much of the server’s pro-
cessing is required in a unit of time. This is naturally a function
of the read and write intensities of instances placed on a server.
The intensity p(s;) at server s; is given by the sum of fragments
of read intensity assigned to s; plus the sum of write intensities
On server s;.

To enable a fair comparison with static provisioning, we as-
sume that there are m instances being serviced by m servers
throughout the rest of this paper. This is a necessary condition
for static provisioning, but not for load sharing.

B. Objective: minimizing maximum intensity

We now define the response time of a server s as a function
T(s). In particular we focus on non-linear, non—decreasing
functions T'(s) that are function of p(s). A processor shar-
ing model, for instance, has been used to describe servicing of

2\We generally assume that 0 < f; < 1, but this condition is not necessary.

tasks in servers [?]. For a processor sharing system, the func-
tion T'(s) = c—lTs)’ where c is a constant describing a server’s
capacity, is the response time function for a unit size job. The
capacity of a server measures the maximum amount of work
processed by the server in one unit of time. The performance
metric to be assessed is the maximum response time across all
servers.

Since the response time is a non—decreasing function of the
intensity placed on servers, our objective is to minimize the
maximum intensity across servers. The largest server intensity
in the solution is then given by popr. Formally,

popT = min max p(s) 1)
sES

Furthermore, in the case of systems with heterogeneous ca-
pacities a provider must maximize the minimum remaining ca-
pacity given by the difference between the capacity of a server
and its intensity.3

The problem of distributing fragments onto servers in order to
minimize the maximum intensity can be restricted to an instance
of the classic scheduling problem. This restriction reveals the
problem to be in the class of NP-complete problems (details in
Section 1V). Therefore we study algorithms based on simple
heuristics.

Let an algorithm A result in a maximum intensity p 4 across
servers. Our goal is to compare the result for an algorithm A
compared to the optimal result pop7 given by the minimum
maximum intensity. We generally establish bounds that deter-
mine how large the largest intensity obtained by A is compared
to popT.

We assume, without loss of generality, that a static provision-
ing configuration is an input to the problem. It is useful to define
the original instance of a server s; to be the instance present in
that server in the static provisioning configuration. Even when
already having a configuration based on load sharing a provider
can still compute a new configuration based on load sharing us-
ing the original item configuration corresponding to the config-
uration of static provisioning as an input.

We remark that the question about how to maintain consis-
tency, rather than the impact of a policy such as load sharing
given the consistency factor, is legitimate but is not the focus of
our study. Answering such question is indeed orthogonal to our
work.

IV. ALGORITHMS FOR LOAD—SHARING

In this section we state two algorithms based on a greedy pol-
icy to reduce the intensity of the busiest servers in provision-
ing a service with consistency requirements. We can reduce the
problem studied here to a well-known, NP—complete problem,
classical scheduling, to show that the problem is NP-hard. This
fact makes the study of greedy algorithms especially relevant.
Let us take a particular instance of our problem in which the
configuration that minimizes the maximum intensity is such that
the sum of fragment sizes at every server is equal to p" and the
intensity popr equal at all servers s € S. If an instance ad-
mits this configuration, then it is optimal. This is true because

3Minimizing the maximum intensity also reduces the variance of intensities
across servers, although minimizing variance is not the primary objective here.

any fragment made smaller at some server s means that a larger
fragment exists in another server other than s, hence the inten-
sity in that second server is higher than popr. Therefore, this
configuration indeed minimizes the maximum intensity found
to be popr. This instance is also a restriction from our prob-
lem since we know the fragmentation factor z; for all instances
a; € A, instead of having to determine z;, 1 < i < m as part of
the problem. In that case, let us place for all instances fragments
of arbitrary sizes with the constraint that the sum of z; fragment
sizes of any instance a; is ~y; (as given in the problem), but such
that the sum of fragment sizes placed at every server is p'. The
problem becomes minimizing the quantities 7; = p(s;) — 0,
which is the sum of write intensities at server s; € S. Therefore
placing fragments is equivalent to adding items (fragments of in-
stances) whose sizes are given by the write intensities v;, since
read intensities sum up to p'. Thus, if we solve the problem
of finding the configuration that minimizes the largest sum of
write intensities in every server we have also resolved our prob-
lem. This corresponds to the scheduling problem of 7, z;
items of size v;, 1 < j < 3" z;, over a set of mn servers S
which is a well-known, NP-hard problem. Therefore, the prob-
lem here is unlikely to admit a solution from a polynomial time
algorithm, under the conjecture that P # N P. It is interesting
to note that when f; = 0, for any a; € S, the problem becomes
simple to solve. In this case, there are no write intensities and
the read intensity can be placed in arbitrary sizes such that the
average intensity at every server reaches the average level.

We proceed next with useful definitions for general algo-
rithms and simple bounds.

A. Useful definitions and facts

Definition A movementfromsto s’ is the transfer of a fragment
- - - 7
of an instance’s read intensity from a server s to server s .

A movement from s to s’ causes an additional write intensity
at server s equal to the write intensity of the instance’s passed
from server s, as previously explained.

Definition An end configuration is said to be a definitely final
configuration if no possible movement can exist from a server to
another without increasing the largest intensity across servers.

In an optimal end configuration, there can be no movement of
fragment from one server to another at the expense of increas-
ing the largest intensity across all servers. Therefore, a desirable
property in an algorithm is that it reaches a definitely final con-
figuration.

Fact IV.1: For a definitely final configuration the difference
between intensities of any pair of servers s; and s;, p(s;) >
p(s;), we have

p(sl) - p(Sj) < VUmaaz,

where v, 1S the largest fragmenting cost (largest writing in-
tensity).

This gives important insight on why the variance of servers’
intensities is reduced when applying the load sharing concept.
Let us also state formally a useful observation that we often use
in this work.

Fact IV.2: Let p* = max{y; + v1,7v2 + V2, ..., Ym + U } be
the largest server intensity before changing the system balance

into a load sharing configuration. We have simple bounds for
popr as follows.

1 m
*

P2 porr > — ;(% +), 2)
which simply states that the optimum lies between the average
of intensities across all servicing instances and the largest server
intensity.

Definition A greedy policy determines the movement of an in-
stance’s read intensity or a fragment of an instance’s intensity
into the server of least minimum intensity. Formally, the greedy
policy specified that an instance a must be placed at s*, such
that p(s*) = minges p(s). This greedy policy can be general-
ized for a set of d fragments of a same instance to be placed in
parallel into d servers with lowest intensities.

Let us also define f = %2 1 f’:” the average of f; weighted

on~;, 1 <i < m.Thisis useful to find the sum of intensities as
a linear function of the sum of read intensities, since >\, (v; +

vi) =S vi+ Yo fivi= (L4 f) X, vi- As aresult of
the fact above we also find for Z;”Zl i

(Z vi+f Zv) < popr

Z% <THE

m

! ('Yz+vz =
—>

i=1

Let us also have for every server s; its intensity p(s;) given
by the sum w; of fragments and the sum h(s;) = h; of write
intensities, s; € S.

Next we use the greedy policy to construct algorithms.

B. Description of the greedy algorithms

Here we build simple heuristic—based algorithms that perform
movements using the greedy policy. The key idea is to limit
the number of fragments to not have an excessive total write
intensity at servers.

Let us consider initially an algorithm which uses the even-size
fragmentation model. Such model is useful because this kind of
fragmentation can be easily implemented as a distribution action
taken by a request dispatcher. The read requests of an instance
a; are directed to a single server at rate 1/z; of the actual rate
without any further complexity. As part of the algorithm a value
k is the maximum value that any z; can assume. In the input of
the algorithm we have p(s;) = v(a;)(1 + f;), 1 < j <m. The
problem with passing a fragment from a server to another in only
one direction, i.e., from a server of larger intensity to a server of
smaller intensity is that the obtained configuration can have the
maximum intensity larger than the previous one. In this case
such movement should obviously be avoided. One way to im-
prove the result is to permit an exchange of fragments such that
not only a fragment is passed from the server of largest intensity
to the ones of least intensity, but to also have fragments taken
from the server of largest intensity and from the ones of least
intensity (in a number of up to £ — 1) and passed one another.
In this case the sum of fragment sizes generally is equal to the

average of £ < k instances’ read intensities. Pick the server with
greatest intensity, say server s;. Now taking a number £ of up to
k — 1 servers of smallest intensities, we proceed to the configu-
ration that gives the smallest maximum intensity. One fragment
should stay in the current server and the other £ — 1 fragments
are potentially placed in the servers with lowest intensities, i.e.
according to the greedy policy. After re—computing the intensi-
ties at all other servers we pick the server with the current high-
est intensity. The procedure continues. In the particular case
of k = 2, the algorithm consists of attempting a series of pair-
wise operations between the current server of largest intensity
with the server of current smallest intensity. This is algorithm
GREEDY(k) .

Another algorithm is GREEDY- FLUI D which takes the fluid
fragmentation model. The policy here is to equalize the inten-
sity at a set of servers with movements always in the direction
that follows from passing fragments from the server of largest
intensity to the ones of least intensity. This takes advantage that
fragments can be of arbitrary sizes. The idea comes from an
analogy of pouring fluid from a vial to another until both of
them reach equal levels of fluid. This policy as opposed to hav-
ing exchanges of fragments from a server to another and the fluid
fragmentation model as opposed to the even—size fragmentation
model make this algorithm differ fundamentally from the pre-
vious one. It is necessary to evaluate, as part of the algorithm,
the amount of fluid that should be transferred from a server s;
to the largest number of servers s € S C S, selected using the
greedy policy, such that s;’s intensity decreases the most or an-
other server, rather than s; server, becomes the one with highest
intensity. By taking advantage of the fluid model, as explained,
intensities of all servers in S" are equal after a movement from
s; of instance a;’s intensity, i.e. p(s;) = p(s;), s; € S’ We
remark that the write intensity f;7; is added to p(s;), if no por-
tion of a;’s intensity is contained in server s;. Next the algo-
rithm proceeds to the server with highest intensity and repeats
the procedure.

Fig. 1. Configurations obtained after movements given by the even—size frag-
mentation model (center) and the fluid fragmentation model (right). By contrast,
a configuration without load sharing is shown to the left.

Figure 1 illustrates an example in which movements are per-
formed across a set of servers {si,s2,s3} for a set of in-
stances {ai,as,as} under both fragmentation models. The
bars’ heights indicate the total intensity at each server. Shad-
owed rectangles indicate the portion of the intensity due to write
requests, whereas white rectangles indicate the portion of inten-
sity due to read requests. The configuration on left-hand side
shows the original distribution in which no load sharing is per-
formed. The configuration in the center shows the result after
the two—way movements among servers s; and sz of fragments
of sizes v(a1)/2 and y(a3)/2 each. The configuration in the
right-hand side shows the result after a fragment of a; of size
such that the intensities at both servers s; and s3 are equal. Note
that on both movements the cost of write requests is added to
server s3. Nevertheless, the maximum intensity is reduced from

the original configuration in both cases.

In particular, for the server of largest intensity pg for
GREEDY(k) (pgr for GREEDY- FLUI D)we can use for con-
venience the notation wg (wgr) for the sum of fragment sizes
and hg (hgr) for the sum of write intensities.

Finally, the complexity of GREEDY(k) and GREEDY- FLUI D

is of the order of O(m log(m)) since the algorithms require sort-
ing instance’s intensities.

Next, we study the worst case analysis of the maximum in-
tensity provided by these algorithms, i.e., how bad they can per-
form compared to an algorithm that minimizes the maximum
intensity.

C. Analysis of GREEDY(k)

Lemma IV.3: In GREEDY(k) the total write intensity
> _scs h(s) placed on servers is bounded as follows
Z h(s) < %”_Tf_ (4)
sES 1+ f
Proof: Here the fragmentation of load from any instance,

say a;, generates at most £ — 1 fragments to be placed in servers
other than server s;. In order to have an upper bound on the total
cost due to write intensities in the output of the algorithm, the
k — 1 write intensities should be counted for all m instances plus
the write intensities that the system contains in static provision-
ing. Hence, >, g h(s) < kD im v = kYo, fivi. We use
then (3), to find (4):

D h(s) < kam _kfz

seS

mkp()PTf
1+ f

|
Theorem IV.4: Let pg be the maximum intensity obtained
under the GREEDY(k) algorithm. Then we have the following
two bounds. First,
pc < porr (1 + Qki) = pGB2- 5)
- 1+ f

and, second, another bound

pa < popT (2 + % - %) = pGB1- (6)

Hence, p¢ < min(pgp1, paB2)-
Proof: We start proving (5). We use the fact that in the

end configuration we cannot have any further movement for any
I up to k. Therefore, for any number [— 1 of servers, 1 <
I < k, an exchange with the one with largest intensity would
take the read intensities at each of the [/ servers to a fraction of
1/1 of the read intensities, i.e. an average, but write intensities
would compound in manner that can exceed the largest intensity
pa. 1f such condition holds for any group of [— 1 servers to be
grouped with the server of intensity pg, then no movement can
be performed. The condition for not having any movement is
formally stated

-1
we +he < 2:-—-+h0-%wg/ﬁ+ha;
=1
V{st}p(snr<pe CS:[{se}| =1 —1,2< 1 < k.

Now let us take [(m — 1)/(I — 1)] groups of I — 1 servers
each plus the server of largest intensity. We rewrite the previous
inequality and subsequently make an algebraic manipulation to
derive the following:

(g+1)(1—-1) W

wg + hg < Z <T+h4)+wg/l+hg,
£=1+4g(1-1)
Vs; €S,2 <1<k,
1<g<|(m-1)/(1-1)].
(9+1)(1-1)

(l — l)wg Wy

I < X (Fm)

L=1+4g(l-1)
Vs; €8,2< 1<k,
1<g<|[(m-1)/(1-1)]

The quantities of w, and h, are unknown, but if we sum the
read intensities placed on all servers it must equal the total read
intensities over all instances. We know that the total write inten-
sity at servers is not necessarily equal to the sum of write inten-
sities over all instances, but certainly larger or equal to the sum
of intensities over all instances and bounded as stated in Lemma
IV.3. Therefore, summing up over all groups we also sum up the
unknown variables wy into the sum of read intensities and sum
of write intensities. Formally,

1 m
TS Xt

And more simply, mwg < Y00 i + 1Y, o5 h(s). This in-
equality is valid for 2 < [< k. Therefore, among all values that
[can assume, [= 2 provides the tightest bound for wg. Next,
we simply use the bounds for both > ¢ h(s) and popr and
algebraic manipulations for a bound for wg:

m m
> 42k fivi
=1 =1

DG+ fov) + @k =1)) fovi
=1 i=1
mpopr + (2k — 1) lf_:anOPT

f
pPOPT (1 + (2k — 1)m)

[(m-1)/(-1)]

>

9=1

g(l-1)

> n

£=1+4(g—1)I

mwg <

mwg <

mwg <
wg <

The inequality above permits us to finish proving (5). For
pc = wag + hga, we find

m _
pe <we + Y fivi < popr (1 + 2]6%)
i=1

We proceed with proving the bound in (6). We utilize an argu-
ment very similar to the one formulated in [?]. Let the algorithm
end with maximum intensity pg. Considering that the last frag-
ment adds a portion of intensity y = = + v (z, read intensity and
v, Write intensity) added to a server we have that all servers’ in-
tensities are at least pg — y. Otherwise the last fragment should

go to the server with intensity less than pg —y. Hence, if we sum
up intensities over all servers and discount the total write inten-
sities, the result should be below the sum of read intensities over
all instances. Hence we have

(bg —y)ym+y—> h(s) < Y
sES i=1
(pg —y)ym+y—D h(s)+ > fivi < mpopr
sES i=1

()

Using the bound for """ | ~; from (3) and the result from (4),
we find
fm(k —)popr
(pc —y)m+y 157
Finally, using the fact that y < popr into (8), we prove the
bound in (6) and finish the proof of the theorem.

< mpopr (8)

©)

|

In the case of £ = 1, which means no fragmentation what-

soever, we have the familiar result for a greedy algorithm to the
classical scheduling problem, stating pg < popr(2 — 1/m).

D. Analysis of GREEDY- FLUI D

Let us first define the maximum fragmentation cost v,,q, =
max,,cA v;. In particular, if Ya; € A, f; = f, then v,
corresponds to the cost of fragmenting the instance of largest
intensity defined by v.naz: Vmaz = fYmaz-

Lemma IV.5: For GREEDY- FLUI Dthe total sum of write in-
tensities is bounded as follows

m
D) <D frvi+ (M= 1)omas. (10)
sES i=1
Proof: Here fluid is poured onto k(1) < k servers, where
k(® denotes the number of pourings in the £ iteration. Similarly,
let pg) mean the largest intensity in the £ iteration. The first
iteration lets () to have equal intensities, thus up to m —1—k&()
servers’ intensities can be above p;. Hence, fluid is poured onto
k@ servers, kK < m—1—k™. When no more movements can
be executed, we have "2, k(©) = m — 1, where A is the total
number of rounds of movements. Therefore we have movement
of fragments causing additional write intensities of at most m—1
times and of the order smaller than or equal to (m — 1)v.44-
Finally, taking into account the initial sum of write intensities
over all instances, 2;11 fivi» we have proven the lemma. B
Theorem IV.6: For GREEDY- FLUI Dthe maximum intensity
par is bounded as follows

pPGF < pGFB = popPT + (2 - _)'Umaz-

Proof: The proof starts with an argument similar to the
one used to prove Theorem IV.4. We know that no movement
can be performed in a very strict sense, i.e. if for a fragment of
negligible size € to be passed from the server of largest intensity

to a server of smaller intensity the write intensity to be added to
the one with smaller intensity causes the intensity to be larger
than previously. Hence, we can use the formal statement of Fact
V.1, ie. pgr — pj < Umaz, Vs; € S. We then sum up over
all servers s; € S, such that we can relate the total read intensi-
ties and write intensities by the sum of read intensities over all
instances and the bound found in Lemma IV.5, resulting,

m m m
mpar— Y _pj =mpar —(D_Yi+ P hj) < MUmas (11)

j=1 i=1 j=1

Using the bound in (10) and manipulating the expression, we
derive

J m
mpar — 3 (Vi + fivi) = (m = Domas <mpar — Y pj

i=1 j=1

Finally, this permits us to find par < popr + Vmez (2—),
which concludes the proof.
|

The importance of this bound is that popr is without any
multiplicative factor and the bound does not increase as m in-
creases.

Corollary IV.7: When f =0, pgr = popT, Which indeed is
an expected result.

E. Quantitative analysis

In this section we present various inputs and outputs for a
service described by m = 16 instances and servers. We use as
inputs the instances’ intensities to be samples of either of three
well-defined curves, a gaussian curve, a fast—decaying curve and
a line. F2irst, che intensity described by a gaussian function is
F%, where z is equal to the server label 4 for any
s; € S, T 7 and o, are constants. The fast-decaying curve and
the line are described by cm}_l and I':%, where « and T" are
constants and z is equal to the server label i for a server s; € S.
The server labels are given by an integer sequence from 1 to m.

The question on how to depict the bounds is not simple to an-
swer since it is difficult to find the optimal configuration, hence
finding the largest intensity in that configuration. A monte—carlo
simulation needs a large number of runs in order to produce re-
sults close to optimal with high likelihood. In the cases consid-
ered here the number of runs necessary for accurate results is
prohibitively large. The used approach is to observe (~1(pr.),
where pr, is the largest intensity in an output and ¢ the function
of popr that expresses the bound ((~! is the inverse function).
We always have that popr > (~1(pr), hence (~1(pz) is a
lower bound of popr. If (~1(pr) is close to the largest inten-
sity found in an output, the bound is tight.

The notation for graphs in this section is as follows. The
server intensities are shown by the bar heights, whereas the aver-
age intensity of servicing instances and the inverse of the bound
are shown by the solid and dotted lines, respectively. Inten-
sity values are shown along the y—axis. Server labels are shown
along the z-axis.

In Figure 2 we observe the outputs using these kinds of
curves. The set of three plots in Figures 2(a), 2(d), and 2(g)

(® (b) (c) (d)
In- GREEDY(k) CGREEDY- FLUI D In-
put put

(® Q] (@ (h) (M)
GREEDY(k)

GREEDY- FLU D In-
put

GREEDY(k)

Fig. 2. Results obtained using GREEDY(k) and GREEDY- FLUI Dfor gaussian, fast—decaying, and linear inputs, f; = .1, 1 <4 < m = 16. Note: a re-labeling

of servers is done during both procedures.

@ (b) (c) (d)
In- GREEDY(k) GREEDY- FLUI D In-
put put

(e)
GREEDY(k)

(f) (9) (h)
GREEDY-FLUI D In- GREEDY(k)

put

Fig. 3. Results obtained using GREEDY(k) and GREEDY- FLUI D for gaussian, fast—decaying, and linear inputs (all randomized), f; = .1,1 < < m = 16.

Note: a re-labeling of servers is done during both procedures.

@ (b)
In- GREEDY(k)
put

(©)
GREEDY- FLUI D

(d) (©)
In- GREEDY(k)
put

®

Fig. 4. Results obtained using GREEDY(k) and GREEDY- FLUI D for fast—decaying input function, f = .2 in (a), (b), (c), f = .3 in (d), (), (f), m = 16. Note:

a re-labeling of servers is done during both procedures.

depict each of the three inputs as described. Each of these con-
figurations correspond to not applying load—sharing, but having
a static provisioning instead. In Figures 2(b) and 2(c), we show
the results after algorithms GREEDY(k) and GREEDY- FLUI D,
respectively, for a set of 16 servers in which their loads (in-
stances) are equally spaced across a gaussian curve. In Figures
2(e) and 2(f), we show the results after algorithms GREEDY(k)
and GREEDY- FLUI D, respectively, for a set of 16 servers in
which their loads (instances) are equally spaced across the fast—
decaying curve as described. In Figures 2(h) and 2(i), we show
the results after algorithms GREEDY(k) and GREEDY- FLUI D,
respectively, for a set of 16 servers in which their loads (in-
stances) are equally spaced across a line also as described. In
all cases, f; = .1, forall a; € A. We observe that in all outputs
the maximum intensity is reduced to approximately the average
value, hence indicating to be close to an optimal value. The
largest intensities found in the outputs (of GREEDY(k) of Fig-
ures 2(b), 2(e), 2(h) are a reduction to about 63%, 50%, and
54% of the largest intensities in each respective inputs. The
same applies for the outputs of the GREEDY- FLUI Dalgorithm
in Figures 2(c), 2(f), 2(i). In the case of the outputs from
GREEDY- FLUI D the bounds are close to the largest intensity
obtained in the outputs as expected.

Another type of input is obtained from selecting m random
numbers between 0 and m, typically a sorted sequence {z;},
z; = U(0,m), 1 < i < m, U a generator that outputs uni-
formly distributed numbers between 0 and m and applying the
functions described previously to each of the z values in the
sequence {x;} As a consequence, the read intensities of the ser-
vice’s instances are also randomized.

Figure 3 depics results obtained when randomizing the in-
puts as described. We show in Figures 3(a), 3(d), 3(g) a set

of three plots which depict the inputs for the randomized gaus-
sian, fast-decaying and linear—increasing inputs, respectively.
In Figures 3(b) and 3(c) the largest intensity in both outputs (of
GREEDY(k) and GREEDY- FLUI D, respectively) is reduced to
about 63% of the largest intensity in the inputs. In the case of
outputs (of GREEDY(k) and GREEDY- FLUI D, respectively)
shown in Figures 3(e), 3(f), for the fast—decaying curve, and also
outputs (of GREEDY(k) and GREEDY- FLUI D, respectively)
shown in Figures 3(h) and 3(i), similar comparisons indicate a
reduction of the largest intensities in each of the cases to about
75% and 58%, respectively, of the largest intensity in the respec-
tive inputs.

Next we observe in Figure 4 inputs and sets of results for the
cases where f; = .2 in Figures 4(a), 4(b), and 4(c) and f; = .3
in Figures 4(d), 4(e), and 4(f), 1 < ¢ < m, for the fast-decaying
curve as input. In this case the values of f; are higher than those
in Figure 2. In Figure 4(b) the largest intensity output from
GREEDY(k) is 62% of the largest intensity in the input. For the
output from GREEDY- FLUI D in Figure 4(c) the largest inten-
sity is 54% of the largest intensity in the input. In Figure 4(e) the
largest intensity output from GREEDY(k) is 67% of the largest
intensity in the input, whereas for GREEDY- FLUI D (Figure
4(f)) it is 57%. This results show a more significant difference
between the outputs of GREEDY(k) and GREEDY- FLUI D as
f = fi increases. Here, the bound for GREEDY(k) is reason-
ably close to the largest intensity found in the output, but for
GREEDY- FLUI Dthe bound is worse, which is a result of hav-
iNg vmae larger as result of values of f;, 1 < ¢ < m, also larger.

We also study inputs and outputs of fast-decaying and gaus-
sian inputs where f; is not equal for all servers but a de-
creasing linear function of the server label, described by f; =
0.2(1 —). Results are shown in Figure 5, where Figure 5(a)

m

GREEDY- FLUI L

0]
GREEDY- FLUI

GREEDY- FLUI L

(®
In-
put

(b)
GREEDY(k)

(c)

Fig. 5. Results obtained using GREEDY(k) and GREEDY- FLUI Dfor linear input, f described by a linear, decreasing function, n = 16. Note: a re-labeling of

servers is done during both procedures.

(a)
In-
put

(b)
GREEDY(k)

(©

Fig. 6. Results obtained using GREEDY(k) and GREEDY- FLUI D for gaussian input, write intensities f;~; equal for any a; € A, m = 16. Note: a re-labeling

of servers is done during both procedures.

depicts the input and Figures 5(b) and 5(c) depict the outputs
for GREEDY(k) and GREEDY- FLUI D, respectively. Here,
f = .07,an average weighted on the input demands, and the
input demands are given by the linear increasing curve. The
outputs exhibit largest intensities which are about 54 % of the
largest intensity in the input for Figure 5. The bounds indicate
values close to the ones found by the largest intensity in each of
the outputs.

Finally we study cases in which the writing intensity is equal
for all instances, i.e. wv; fivi = v; fiv; for any
a;,a; € A. Therefore, in this case the fragmenting cost of
an instance’s read intensity is a constant, regardless of the in-
stance. We show in Figure 6 an example of input given by a
gaussian curve and equal write intensities. Here, Figure 6(a) de-
picts the input, whereas Figures 6(b) and 6(c) plot the output for
GREEDY(k) and GREEDY- FLUI D, respectively. The outputs
of both GREEDY(k) and GREEDY- FLUI D show a reduction
to about 63 % of the largest intensity in the output from the
largest intensity from the input. The bound gives a value close
to the one found by the largest intensity, especially in the case
of GREEDY- FLUI Din Figure 6(c).

V. FAST FLUCTUATION OF DEMANDS: PRELIMINARY
MODEL AND ANALYSIS

In the previous section we examine simple algorithms that can
be applied to distribute servicing across a set of servers and to
reduce intensity and consequently response time. It is then as-
sumed that averages of instances’ intensities over measurement
intervals give an accurate description of the system. These av-
erages are snapshots taken over measurement intervals. But in
some systems demands can fluctuate at a rate larger than the
rate at which measurements are taken. Furthermore, the mea-
surement rate can be constrained by practical limitations, thus
cannot be made as small as desired. Examples include any in-
stance of flash demand, i.e., demands that peak up unexpectedly
and go down in a small timescale. For instance, activity of an
auctioning system can have sudden, short-lived peaks due to a
submitted bid that triggers a series of other bids from other users
competing in the same auction. It is also well known that auc-
tions’ activity increases when close to their deadlines for sub-

mitting bids.

It could happen in a scenario of two instances a; and a, that
a1 exhibits high demand, a- exhibits low demand, and vice—
versa, even if in the long—run both exhibit equal average inten-
sity. The key idea here is to explore the possibility of statistical
multiplexing across the demands of the two servers by having
load sharing of both instances by servers s; and s». In this case
a system with servers containing equal average response times
can differ greatly with fluctuation of demand.

The model is extended to describe the intensity process for
instances a; and az by modulated processes each that describes
demands in high and low demand periods. For an instance a;
read intensities in high and low demand periods are ~y; and %
respectively, and for write intensities in high and low demand
periods v; and vZ respectively, i = {1,2}. The total intensity
for an instance a; in high and low demand periods is w; and w,
respectively, which correspond simply to the sum of read and
write intensities, i.e., w; = 7; + v; in high—demand periods and
w = 7; + v;. in low—demand periods.The instance’s intensity is
high with probability p;, and, conversely, low with probability
1—p;. Similar to the description in Section Ill, the ratio between

the write intensity v; and the read intensity ~y; is f; = g— = .

Assingle server is described by a processor sharing queue with
Poisson arrivals and capacity c.

In partlcular we consider the case in WhICh w1 =wy = w,
w1=wz=w NM=P =Y N="Ta=7,01 =v2 =,
v1 = 1)2 =, and p; = p» = p. This case is interesting since it
yields equal averages for both servers. Since in a configuration
given by static provisioning the response times are already bal-
anced, one might think by a simple intuition that the consistency
cost increases response time when applying load sharing, but we
demonstrate that this is not necessarily the case. In fact, we pro-
ceed to demonstrate in this section that applying load sharing
can reduce response times.

The intensity p(s) at a server is a random variable that is
a function of the number of instances placed at s and the
state (high, low) for each of the instances. It is convenient
to define random variables N; and N,, each describing if in-
stances a; and ao, respectively, are in high demand periods

GREEDY- FLUI L

GREEDY- FLUI [

(Ni = 1, Ny = 1) or in low demand periods (N; = 0,
N, = 0). It is further convenient to define the joint probabil-
ity Tuy,ug = P(Nl =uy,Ny = UQ) = pu1+u2(1 — p)27u1+u2.
The probability that a random request is one of instance a; is

!
B1 = (u1+Z;;’:JS;_“;1)“ju2)w,, conditioned on N; = w; and

Ny = us. Similarly, the probability that a random request is
; i _ u2w+(1—u2)wl e
one of instance as is B2 = AT Ca——— con_dltloned
on Ny = u; and No = wuy. The average response times for
a unit-size job conditioned in the states of instances a; and
H _ _ 1
as are, respectively, E[TlNi = w] = = E g a}nd
E[T|Ny = ug] = et (—ua) The static provisioning

configuration yields an average response time as follows.

1 1
> > BET|NG = wi]mu, s +

u1=0 us=0

1 1
Z Z BQE[T|N2 = u2]7ru1,u2; (12)

U1l =0 u2=0

E[T]zzl =

where z = 1 says that each of the instances is served at only
one server, hence the static provisioning approach. For load
sharing the response time conditioned on both state variables
N = u and No = wuo is E[T|N1 = ul,NQ = ’U.z] =

1 y: When f is small, say

cf((u1+u2)w+(17u1)(17u2)w')(172(11—_”)
f = 0 for the extreme case, and both instances are in a high—
demand period, i.e., both Ny = u; = 1 and N = us = 1, the
intensity is equal to the intensity in static provisioning. If only
one of them is in high—demand period, however, then the inten-
sity can be cut by a half from the factor 1 — ﬁ which can
result in significant reduction in response time. The reduction
in average also occurs since the probability of having a single
instance at high—demand period is higher than the probability of
having both at high—demand periods for p small. Finally, the
average response time using load sharing is derived:

1 1
E[T]:=a= Y Y E[T|Ny =u1, Ny = tp]my, uy, (13)

u1=0 uz=0

where z = 2 says that each of the instances is served on both
servers, hence the load sharing approach.

The graphs in Figure 7 show the response time along the y—
axis, whereas the fraction f of read requests in Figure 7(a) and
the probability p are shown along the z—axis in Figure 7(b). The
scenario here is given by w = 1 in high periods, w = .1 in low
periods, ¢ = 2.5, f = .111 (Figure 7(b)), and p = .2 (Figure
7(a)).

In Figure 7(a) the curves show the results obtained for z = 1,
and z = 2, meaning that only one (¢ = 1) instance serviced per
server (static provisioning) and two instances (z = 2) serviced
at each server (load sharing). The results when varying f indi-
cate the expected tradeoff in the amount of read requests, i.e.,
starting from approximately f = 0.8 downward the response
times using z = 2 (load sharing) are smaller than z = 1 (static
provisioning).

In Figure 7(b), by observing the probability p of an instance
being on a high—demand period such that p < 0.8, the response

(a)
Re-
sponse
times
as
func-
tion
of

ra-
tio
be-
tween
read
and
write
in-
ten-
Si-
ties.

(b)
Re-
sponse
times
as
func-
tion
of
prob-
a-

bil-

ity

p

of
high
de-
mands.

Fig. 7. The case of two servers and two instances. Here, w = 1 in high periods,
w' = .1in low periods, ¢ = 2.5, f = .111 (in Figure 7(b)), and p = .2 (in
Figure 7(a)).

times when z = 2 are smaller than the ones when z = 1. When
p is high, in this case p > 0.8, both instances are very likely to
be busy simultaneously, hence load sharing does not introduce
a better result than a static provisioning solution. By contrast,
when p < 0.8, the probability that either one of the instances
(but not both) being in high—-demand period and the other one
in a low—demand period is larger than the probability that both
are on high—demand period. This fact, along with the better load
distribution, explains why load sharing results in smaller aver-
age response times. The exception happens when p is low, since
most likely both are on low—demand period and the probabil-
ity of either one being on high—-demand becomes smaller. This
fact explains why in Figure 7(b) as p decreases from p = 0.4
downward, the gap between the two curves gets narrower.

VI. CONCLUSION

In this work we have studied the impact of load sharing in pro-
visioning services with consistency requirements. A provider
must take into account that consistency requirements place an
extra burden to servers that “share” load. We model such ser-
vicing systems to investigate the fundamental factors on how to

apply load sharing.

The problem of minimizing the maximum intensity across
servers as a way to reduce response times is found to be NP-
hard. We have defined greedy algorithms for this problem and
analyzed the outcomes from these greedy algorithms. The anal-
ysis shows that for the outcome of the GREEDY- FLUI D algo-
rithm, the largest intensity is always within a constant factor of
the optimal. We observe that by applying load—sharing response
times can be significantly reduced, since in quantitative analysis
of representative cases the largest intensity can drop to approx-
imately 50% of the largest intensity in a configuration in which
all service instances are each served by a single server.

We also demonstrate that, even when response times given
as result of static provisioning are equal in all servers, average
response times when applying load sharing are smaller, if ser-
vicing instances fluctuation of demands are asynchronous. We
show, for example, a simple scenario, in which intensities of
two servers are equal with each of them serving a single in-
stance, and by having the two servers serving both instances,
response times are made approximately 10% smaller. This re-
sult is insightful and we can definitely expect a greater reduction
of response times for comparisons of results that consider load—
sharing to those that do not for larger number of instances and
larger number of servers.

10

