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Abstract—Object tracking applications are gaining popularity
and will soon utilize Energy Harvesting (EH) low-power nodes
that will consume power mostly for Neighbor Discovery (ND)
(i.e., identifying nodes within communication range). Although
ND protocols were developed for sensor networks, the challenges
posed by emerging EH low-power transceivers were not addressed.
Therefore, we design an ND protocol tailored for the characteristics
of a representative EH prototype: the TI eZ430-RF2500-SEH. We
present a generalized model of ND accounting for unique proto-
type characteristics (i.e., energy costs for transmission/reception,
and transceiver state switching times/costs). Then, we present
the Power Aware Neighbor Discovery Asynchronously (Panda)
protocol in which nodes transition between the sleep, receive,
and transmit states. We analyze Panda and select its parameters
to maximize the ND rate subject to a homogeneous power
budget. We also present Panda-D, designed for non-homogeneous
EH nodes. We perform extensive testbed evaluations using the
prototypes and study various design tradeoffs. We demonstrate
a small difference (less then 2%) between experimental and
analytical results, thereby confirming the modeling assumptions.
Moreover, we show that Panda improves the ND rate by up to
3x compared to related protocols. Finally, we show that Panda-D
operates well under non-homogeneous power harvesting.

Index Terms—Neighbor discovery, energy harvesting, wireless

I. INTRODUCTION

Object tracking and monitoring applications are gaining
popularity within the realm of the Internet-of-Things [1].
Emerging low-power wireless nodes that can be attached to
physical objects are enablers for such applications. Often,
these nodes are meant to interact with a reader, but archi-
tectures are emerging that handle scenarios where no reader
may be present, or where the number of nodes overwhelms
the readers’ availability. These scenarios can be supported by
Energy Harvesting (EH) tags (e.g., [2], [3] and references
therein) that are able to communicate peer-to-peer and are
powered by an ambient energy source (e.g., light).

Such EH nodes will enable tracking applications in health-
care, smart buildings, assisted living, manufacturing, supply
chain management, and intelligent transportation as discussed
in [4], [5]. An example application, illustrated in Fig. 1(a), is
a large warehouse that contains many inventory items, each of
which is equipped with an EH node. Each node has an ID that
corresponds to the physical object (item). The nodes utilize a
Neighbor Discovery (ND) protocol to identify neighbors which
are within communication range, and therefore, the system can
collect information about the objects’ whereabouts. A simple
application is identifying misplaced objects: often when an
item is misplaced (e.g., in a furniture warehouse, a box of
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Fig. 1. (a) EH nodes can be attached to everyday objects (e.g., boxes) and
utilize neighbor discovery protocols for inventory tracking and monitoring
applications. (b) The prototype EH node stores harvested energy in a capacitor
and powers the microcontroller and transceiver.

table parts is moved to an area with boxes of bed parts), its
ID is significantly different from the IDs of its neighbors. In
such a case, the misplaced node can, for instance, flash a low-
power LED to indicate that it is lost.

In this paper, we develop an ND protocol for Commercial
Off-The-Shelf (COTS) EH nodes, based on the TI eZ430-
RF2500-SEH [6] (shown in Fig. 1(b)). The nodes harvest
ambient light to supply energy to a low-power microcontroller
and transceiver. To maintain perpetual tracking of the (po-
tentially) mobile objects, ND must be run continuously with
the node operating in an ultra-low-power mode that consumes
power at the rate of power harvested [7]. Our objective is to
maximize the rate in which nodes discover their neighbors,
given a constrained power budget at each EH node.

ND has always been an important part of many network
scenarios [8], [9]. Yet, to consume power at the rate of power
harvested, EH nodes require extremely limited power budgets:
we show that, even with optimized power spending, the duty
cycles are between 0.1-0.6%. Therefore, numerous assump-
tions from related works (e.g., [10], [11]) no longer hold,
including that switching times (between the sleep, receive, and
transmit states) draw negligible power and that the power costs
to send and receive are identical (see Section II for details).
Furthermore, in the envisioned applications, the node’s main
task is to perform ND, and thus, the power consumed by ND
is the dominant component of the power budget.

Hence, we design, analyze, and experiment with Panda–
Power Aware Neighbor Discovery Asynchronously,1 an ND
protocol that maximizes the average discovery rate under a
given power budget. The main contributions of this paper are:

1The protocol name, Panda, relates to the animal as both EH nodes and
Pandas spend the majority of their time sleeping to conserve energy.



(C1) Radio Characterization: We model a generic ultra-low-
power EH node that captures the capabilities of our prototype
(Fig. 1(b)). We also study, for the first time, important prop-
erties of the radio in the context of ND.
(C2) Panda Protocol: We develop the Panda protocol in
which an EH node discovers its neighbors by transition-
ing between the sleep, receive, and transmit states at rates
that satisfy a power budget. Furthermore, we present Panda-
Dynamic (Panda-D), which extends Panda’s applicability to
non-homogeneous power harvesting and multihop topologies.
(C3) Protocol Optimization: Using techniques from renewal
theory, we derive closed form expressions for the discovery
rate and the power consumption. We develop the Panda Con-
figuration Algorithm (PCA) to determine the node’s duration
in each state (sleep, receive, transmit), such that the discovery
rate is maximized, while meeting the power budget. The
solution obtained by the PCA is numerically shown to be
between 94–99.9% of the optimal for all scenarios considered.
(C4) Experimental Evaluation: Using TI eZ430-RF2500-
SEH EH nodes [6], we show that the real-life discovery
rates are within 2% of the analytically predicted values,
demonstrating the practicality of our model. Moreover, we
show that Panda’s experimental discovery rate is up to 3 times
higher than the discovery rates from simulations of two of the
previously best known low-power ND protocols [10], [12].
Furthermore, we demonstrate that Panda-D adjusts the rate of
ND for scenarios with non-homogenous power harvesting and
multihop topologies.

The rest of the paper is organized as follows. In Section II
we discuss related work. In Section III we present the system
model. In Sections IV and V, we present and optimize
Panda, respectively. In Section VI, we present the Panda-D
protocol. In Section VII, we evaluate Panda experimentally.
We conclude in Section VIII. Due to space constraints, several
results are omitted and can be found in a technical report [13].

II. RELATED WORK

ND for low-power wireless networks is a well studied
problem (see [1], [8], [9] for a summary). The protocols can
be categorized into deterministic (e.g., [10], [11], [14]–[16])
and probabilistic (e.g., [12], [17]). Deterministic protocols
focus on guaranteeing an upper bound on discovery latency,
while the choice of parameters (e.g., prime numbers) is often
limited. On the other hand, the most well-known probabilistic
protocol [12], has a better average ND rate, but suffers from
an unbounded discovery latency. Our probabilistic protocol,
Panda, is fundamentally different: other protocols (i) are
constrained by a duty cycle, instead of a power budget, (ii)
do not account for channel collisions (e.g., when two nodes
transmit at the same time), (iii) rely on each node maintaining
synchronized time slots,2 or (iv) do not consider practical
hardware energy consumption costs (i.e., the power consumed
by the radio to transition between different states).

2It was shown in [14] how the aligned time slot assumption can be relaxed.
Yet, practical considerations such as selecting the slot duration and avoiding
collisions are not described.

To the best of our knowledge, Panda is the first ND protocol
for EH nodes and the first attempt to maximize the discovery
rate, given a power budget. As such, Panda will operate with
duty cycles between 0.1-0.6%, which is an order of magnitude
lower than those typically considered in prior works [9].

In our experiments, we use hardware from [6]. There are
also numerous other hardware options for EH nodes [3], [18],
computational RFIDs [19], and mm3-scale wireless devices
[20]. Additionally, there are other radio features that achieve
low energy consumption. For example, preamble-sampling and
wake up radios were investigated in [21] and [22], respectively,
for WSNs. However, the added power consumption of these
features makes them impractical for the EH nodes we study.
Furthermore, numerous options for low-power wireless com-
munication exist (e.g., Bluetooth Low Energy [23]). However,
[6] is one of the increasingly popular low-power EH nodes
which seamlessly support wireless protocol development.

III. SYSTEM MODEL

In this section, we describe our prototypes, based on which,
we introduce the notation and the system model.

A. Prototype Description
The prototype is shown in Fig. 1(b) and is based on the

commercially available TI eZ430-RF2500-SEH [6]. We made
some modifications to the hardware, which are summarized in
[13]. We now describe the prototype’s components:
Energy Harvesting Power Source: The prototype harvests
light from a Sanyo AM 1815 amorphous solar cell. The solar
cell is set to a fixed harvesting voltage of 1.02V (no power
point tracking techniques are used). To measure the power
harvested, we place a ammeter in series with the solar cell.
Energy Storage: The energy harvested by the solar cells is
stored in a capacitor and the voltage is denoted by Vcap. The
voltage is regulated to 3.5V to power the node. We modified
the board design to enable experimentation with varying
capacitor sizes. Unless stated otherwise, we use a 30mF
capacitor. To ensure stable voltage regulation, a software cutoff
is imposed; if Vcap ≤ 3.6V, the node enters and remains in
a low-power sleep state until enough power is harvested such
that Vcap exceeds the cutoff.
Low-Power Microcontroller: A TI-MSP430 microcon-
troller is used to provide computational capabilities. These
include (i) sampling the capacitor voltage using an analog
to digital converter (ADC), (ii) operating a low-power 12kHz
clock with an idle power draw of 1.6µW to instruct the node to
enter and exit an ultra-low-power sleep state, and (iii) receiving
and sending messages to the radio layer.
Low-Power Transceiver: The prototype utilizes a CC2500
wireless transceiver (a 2.4GHz transceiver designed to pro-
vide low-power wireless communication) to send and receive
messages. The transceiver operates at 250kbps and consumes
64.85mW while in receive state. The transmission power can
be set in software and we utilize levels between −16 and
1dBm, with a resulting power consumption between 53.25
and 86.82mW. At these levels, nodes within the same room
typically have little or no packet loss.



B. System Model

The model is based on the prototype, yet it is generalizable
to a class of other prototypes (e.g., [3]). A node can be in
one out of three states, denoted by the set S = {s, r, t} for
sleep (s), receive3 (r), and transmit (t). A node in state i ∈ S
consumes power of Pi. Since the power consumption in sleep
state is negligible, we assume Ps = 0 throughout the paper
and remark that all results can be easily applied for Ps > 0,
as described in [13]. For the power budgets we consider, the
energy consumed by the radio to transition between different
states is non-negligible. Hence, we denote by Cij the energy
(µJ) consumed to switch from state i to state j (i, j ∈ S).

Unfortunately, the prototype does not have explicit power
awareness (unlike, e.g., [3]). Therefore, we impose a power
budget, Pb (mW) on each node. The power budget is set such
that energy neutrality is achieved: nodes consume power (on
average) at the power harvesting rate [24]. Hence, for an EH
node harvesting more power (e.g., brighter light source), the
power budget Pb is higher.

We denote by N the number of nodes in the network and
present two important definitions:

Definition 1: The discovery message is a broadcast packet
containing the ID of the transmitter.4 A discovery occurs when
a node receives a discovery message from a neighbor. Multiple
discoveries can occur per discovery message transmission.

Definition 2: The discovery rate, denoted by U , is the
expected number of discoveries in the network per second.
The objective of the ND protocol is to maximize the discovery
rate, subject to a given power budget. This is in contrast to
other works which seek to minimize the worst case discovery
latency [10], [11], subject to a duty cycle. As such, in
Section VII, we also consider the discovery latency, or time
in between discoveries, as a secondary performance metric.

IV. THE PANDA PROTOCOL

In this section we describe and analyze Panda, an asyn-
chronous ND protocol, which operates under a power budget.

A. Protocol Description

To ensure perpetual operation under the power budget Pb
(mW), nodes initialize in a low-power sleep state to conserve
energy. To maximize the discovery rate, Panda follows a
probabilistic approach in which nodes sleep for an exponential
duration with rate λ (ms−1). The probabilistic sleep duration
prevents unwanted synchronization among subsets of nodes.

Following sleep, nodes awaken and listen to the channel for
discovery messages from their neighbors for a fixed duration
of l (ms). If a message is received, the node remains in the
listen state until it completes reception of this message. If

3We refer to the receive and the listen states synonymously as the power
consumption of the prototype in both states is similar.

4In practice, the discovery message may include information on already
discovered neighbors, thus enabling indirect discoveries. However, we do not
consider these indirect discoveries.

no transmission is heard while in the listen state, the node
transmits its discovery message of fixed duration M (ms).5

Note that in Panda, similar to CSMA, nodes always listen
before they transmit, and therefore, there are no packet colli-
sions between two nodes in wireless communication range of
one another. Additionally, after a message is transmitted, the
node returns to the sleep state. Hence, there is no acknowl-
edgement of the discovery. This is because coordinating ac-
knowledgement messages among multiple potential receivers
can be costly, requiring additional listening by the transmitter
and possibly collision resolution.

B. Analysis

While Panda can operate in general scenarios, for analytical
tractability, we assume the following:
(A1) All nodes are homogeneous, namely, have the same
power budget Pb and the same hardware.
(A2) Every pair of nodes can exchange packets (clique topol-
ogy) with no packet errors due to noise.
(A3) The number of nodes, N , is known a priori.

These assumptions are applicable to some systems and
envisioned applications. For example, when tracking boxes in a
room (Fig.1(a)), these assumptions are close to reality as nodes
in close proximity harvest similar amounts of energy, have
few packets lost, and the number of nodes can be estimated a
priori. However, for scenarios in which these assumptions do
not hold, in Section VI, we present Panda-Dynamic which is
based on relaxed assumptions and discuss the implications.

Using these assumptions, we now use techniques from
renewal theory [25] to analyze Panda for a network of N
nodes. The renewal process is shown pictorially in Fig. 2.
The renewal initiates with all nodes in the sleep state and
ends after one node completes its transmission, whether the
message is heard or not. The sleep duration for each node
follows a memoryless exponential distribution. Therefore, for
all analytical purposes, all nodes effectively initiate their sleep
state at the start of the renewal.

In each renewal, the first node to wake up begins its listen
state, and after a duration l, it transmits its discovery message.
This is exemplified by node 6 in Fig. 2; we denote by Nt the
set containing a single transmitting node in a renewal.

Nodes that are in the receive state (r) when a message
transmission begins, will stay in this state until the transmis-
sion is completed and then switch to the sleep state (s). We
denote by Nr the set of such nodes and |Nr| the size of the
set, exemplified by nodes 2-4 in Fig. 2. The expected idle
listening time of a node in Nr is denoted by χ. Fig. 2 shows
examples of idle listening durations for nodes 2–4, denoted as
χi. Any node which wakes up in the middle of the message
transmission immediately senses the busy channel and returns
to the sleep state. An example is node 5 in Fig. 2.

When the transmission is completed, all nodes are in sleep
state and the renewal restarts. The average renewal duration is

5The discovery message duration, M , is fixed, stemming from the fixed
amount of data contained in the message.
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Fig. 2. Renewal process representing one renewal cycle for N = 7 nodes:
all nodes begin in a memoryless sleep state and the renewal restarts after the
first node to wake up completes its transmission.

the time it takes for the first node to wake up (occuring with
rate Nλ), listen for a duration l, and transmit a message for
a duration of M . Hence, the expected renewal duration ρ is:

ρ = 1/(λN) + l +M. (1)

C. Discovery Rate

Recall that the objective of Panda is to maximize the
discovery rate, U (see Def. 2). Considering U as the reward
function and applying the elementary renewal theorem for
renewal-reward processes [25], we obtain:

U := lim
t→∞

u(t)

t
=

E[|Nr|]
ρ

, (2)

where u(t) represents the number of discoveries (as defined
by Def. 1) by time t and ρ is computed by (1).

There are N − 1 nodes who are not the transmitter in the
renewal, each of which is equally and independently likely to
discover the transmitter. A discovery occurs if the node wakes
up from sleep within a period of time l after the transmitting
node (Nt) wakes up, an event with probability 1−e−λl. Hence,

E[|Nr|] = (N − 1)(1− e−λl). (3)

D. Energy Consumption

Since all nodes are homogenous (A1), we let n denote an
arbitrary node and define a random variable Y that indicates
the set (Nt, Nr) in which the node resides in the renewal:

Y =

 0, n ∈ Nt
1, n ∈ Nr
2, otherwise.

(4)

We let η(y) represent the expected amount of energy (µJ)
consumed by a node in a renewal in which Y = y. Thus,

η(0) = Csr + Prl + PtM + Cts, (5)

η(1) = Csr + Pr(χ+M) + Crs. (6)

Eq. (5) defines the energy consumption of the transmitting
node, which consumes energy to wake up from sleep (Csr),
listen for a period of l, transmit a message of length M , and
then return to sleep (Cts). For a receiving node, the expected
energy consumption is defined in (6) and consists of idle
listening before the message transmission (with χ denoting
the expected duration of idle listening, shown in Fig. 2). The
derivation of χ can be found in [13]. Then, the node listens
for the duration of the message M . Throughout this paper,
we assume that nodes which sleep for the entire renewal (e.g.,
nodes 1 and 7 in Fig. 2), and those which wake up briefly and

sense a busy channel (e.g., node 5), do not consume power,
and thus η(2) = 0. In [13], we show how it can be relaxed.

The computation of Pr(Y = y) for y = 0, 1 is as follows. By
definition of the renewal, there will be exactly one transmitter
in a renewal and due to assumption (A1), Pr(Y = 0) = 1/N .
Each of the remaining N − 1 nodes successfully receive
the message, if they start listening in a period of length l
preceding the transmission. Hence, since the sleep duration is
exponentially distributed, Pr(Y = 1) = (1− e−λl)(N −1)/N .

Define Φ(y) = Pr(Y = y)η(y)/ρ and note its units are
(mW); we will often refer to Φ(0) as the probing power while
Φ(1) is referred to as the discovery power. As described above,
η(2) = 0, and thus Φ(2) = 0. The expected power consumed
in a renewal must meet the power budget, Φ(0) + Φ(1) ≤ Pb.

V. OPTIMIZATION OF PANDA

Clearly, the choice of the sleep rate (λ) and the listen
duration (l) determines the power consumption of the node
as well as the discovery rate U . First, we demonstrate that an
analytical solution is difficult to obtain. Next, we describe the
Panda Configuration Algorithm (PCA) which obtains the con-
figuration parameters (λ, l) for Panda. Finally, we demonstrate
that the PCA obtains a nearly-optimal discovery rate.

A. Problem Formulation and Preliminaries

Finding (λ∗, l∗) that maximizes U is formulated as follows:

maxλ,l U =
(N − 1)(1− e−λl)

ρ
(7)

s.t. Φ(0) + Φ(1) ≤ Pb, (8)
where (7) is derived using (2) and (3). Recall that ρ is
computed from (1) and Φ(y) is computed using the results
from Section IV-D. The problem as formulated above is non-
convex and non-linear, and is thereby challenging to solve.

In the following subsections, we will attempt to find nearly-
optimal Panda configuration parameters (λ, l). We now provide
several observations on the specific structure of the problem
which are used throughout this section. First, we find the
following Taylor-series approximation useful:

e−x ≥ 1− x for x ≥ 0, and e−x ≈ 1− x for x ≈ 0. (9)
We substitute x with λl in (9),6

U ≤ (N − 1)λl

ρ
:= U. (10)

B. Panda Configuration Algorithm (PCA)

The Panda Configuration Algorithm (PCA) returns a con-
figuration of λ and l that satisfy (8). To find a configuration
with the highest discovery rate, the PCA utilizes a relaxed
problem formulation as follows. An upper bound on the
discovery power, Φ(1), is computed by using (9) to obtain
(1− e−λl) ≤ λl, which leads to,

Φ(1) ≤ Φ(1) :=
N − 1

Nρ
λl (Pr(χ+M) + Csr + Crs) . (11)

6Limited power budgets cause EH nodes to be in the sleep state much
longer than in the listen state. Thus, λl ≈ 0 and (9) is a good approximation.



Panda Configuration Algorithm (PCA)
1: for K = [0, ε, 2ε, . . . , b ρmax

ε
cε] do

2: Find (λ, l) that maximize (10) subject to (12)
3: if λ,l satisfy (8) then
4: Compute the discovery rate U
5: return (λ, l) that maximize U , denoted as λA, lA, and UA.

The relaxed power budget constraint is then,
s.t. Φ(0) + Φ(1) ≤ Pb. (12)

The PCA analytically computes the values of (λ, l) that
maximize U by solving for λ in terms of l in (11), and then
finding the critical points where dU/dl = 0. For computation
tractability, the PCA replaces χ with a constant K in Φ(1).
The PCA uses the fact that, in practice, a node’s sleep time is
upper bounded, introducing an upper bound on the renewal
duration ρmax. Thereby, the PCA sweeps values between
0 ≤ χ ≤ ρmax, and returns the best solution (i.e., the one
that maximizes U ). We denote the discovery rate that the PCA
obtains by UA and the configuration parameters by (λA, lA).

C. An Upper Bound

To compute an upper bound on Panda’s optimal discovery
rate, we first derive a lower bound on the discovery power in
an optimal solution, denoted by Φ∗(1).

Theorem 1: The discovery power in an optimal solution,
Φ∗(1), satisfies,

Φ∗(1) ≥ UA
N

(PrM + Crs + Csr) := Φ∗(1), (13)

where UA is the discovery rate returned by the PCA.
The proof of Theorem 1 is in [13]. Using (10) and (13), an
upper bound optimization problem is formulated as,

maxλ,l U∗ = (N − 1)λl/ρ (14)
s.t. Φ(0) + Φ∗(1) ≤ Pb. (15)

Note that (15) effectively considers only a portion of the
discovery power. This implies that the upper bound solution
may be infeasible as it will incur an average power spending
value higher than Pb. However, a solution maximizing (14)
is in fact an upper bound on the optimal solution U∗, and
is denoted by U∗. To solve for U∗, we first solve for λ
with respect to the power constraint in (15). Then, we solve
dU∗/dl = 0 to obtain the listen time that maximizes U∗ (for
details, see [13]).

D. Performance of the PCA

We now compare the discovery rate from the PCA (UA)
to the upper bound discovery rate computed in Section V-C
(U∗). In this section, we will refer to the ratio UA/U∗ ≤ 1 as
the approximation ratio. Values close to 1 imply that UA is
close to U∗, and therefore, also close to the true optimal U∗.

Recall that the upper bound is computed by ignoring part
of the discovery power, and therefore, violating the power
constraint. Hence, when the discovery power Φ(1) in the
optimal solution is indeed negligible (≈ 0), the upper bound
U∗ is close to the true optimal, U∗. Therefore, as the discovery
power decreases, the approximation ratio approaches 1.
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Fig. 3. The performance of the PCA for varying power budgets, Pb, and
number of nodes, N : (a) discovery power as the percentage of the power
budget (Φ(1)/Pb), and (b) the approximation ratio (UA/U∗).

In Fig. 3 we show both the discovery power and the ap-
proximation ratio resulting from the configuration parameters
returned by the PCA for varying N ∈ {2, 5, 10, 25}. In
Fig. 3(a), we consider the discovery power as a proportion
of the total power budget Pb. As shown, smaller values of N
or Pb result in a smaller proportion of discovery power.

Fig. 3(b) shows the approximation ratio UA/U∗ as a func-
tion of the power budget Pb. First, note that the approximation
ratio is always greater than 94% for all parameters considered.
Therefore, because UA ≤ U∗ ≤ U∗, the discovery rate
provided by the PCA is within 6% of the optimal. Additionally,
for larger values of N or Pb, the approximation ratio decreases.
In this domain, the discovery power is larger (see Fig. 3(a)),
and therefore, the discovery rate returned by the PCA (UA) is
further from the upperbound (U∗), but not necessarily further
from the optimal (U∗).

VI. PANDA-DYNAMIC (PANDA-D)

Panda is analyzed assuming that nodes are homogenous
(A1), are arranged in a clique (A2), and the number of nodes
N is known a priori (A3). However, when these assumptions
do not hold, the expected power consumption of a node
operating with Panda (see Section IV-D) will vary and the
power budget is no longer satisfied. Therefore, in this section,
we present Panda-Dynamic (Panda-D).

Panda-D operates with the same behavior as Panda, tran-
sitioning between the sleep, receive, and transmit states.
However, to handle the varying power consumption with
the relaxed assumptions, the rate of the exponential sleep
duration is dynamic, and is adapted based on the voltage of
the capacitor,7 Vcap. Thereby, if a node consumes too much
power, its voltage will decrease and it will adapt by staying
in the sleep state for longer durations.

Formally, the configuration parameters for Panda-D are
computed as follows. In this case, Pb represents an estimated
power budget for each node, yet we allow for each node to
harvest power at varying rates around Pb. The sleep duration
is scaled such that the nodes’ anticipated power consumption
is 0.01mW when Vcap = 3.6V, and is Pb when Vcap = 3.8V.
From the two points, the desired power consumption of the

7A similar adaptation mechanism was also proposed in [24].
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Fig. 4. Panda experimental setup: 5 EH nodes harvest energy through the
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node, Pdes, is computed as a linear function of the capacitor
voltage (Vcap),

Pdes(Vcap) =
Pb − 0.01

3.8− 3.6
(Vcap − 3.6) + 0.01, 3.6 ≤ Vcap ≤ 4.

Based on the desired power consumption Pdes, the node
adjusts its sleep duration. As mentioned above, we cannot
explicitly relate the sleep duration to the power consumption
for a node. Instead, we will estimate the power consumption
by ignoring the discovery power. That is, we assume that a
node always follows the sleep, receive, transmit cycle and is
spending on average at rate,

Pest =
η(0)

1/λ+ l +M
=
Prl + PtM + Csr + Cts

1/λ+ l +M
.

The average sleep duration, 1/λ, is computed as a function
of the capacitor voltage (Vcap) by solving Pest = Pdes,

1

λ
=
Prl + PtM + Csr + Cts

Pdes(Vcap)
− l −M. (16)

We remark that the listen time l is obtained using the PCA
with N = 2 (i.e., we try to maximize the discovery rate for
each directional link).

We claim that the robustness of Panda-D is two-fold. First, it
is power aware and thus nodes can operate under different and
varying power harvesting rates, relaxing (A1). Additionally, it
does not require any a priori knowledge of the size or topology
of the network, relaxing (A2) and (A3).

VII. EXPERIMENTAL PERFORMANCE EVALUATION

We now evaluate Panda using a testbed, pictured in Fig. 4,
composed of TI eZ430-RF2500-SEH [6] prototypes (described
in Section III-A). First, we evaluate Panda in the context of the
model presented in Section III-B. We compare Panda’s exper-
imental discovery rate, denoted by UE , to related work. Then,
we evaluate Panda-D in scenarios with non-homogeneous
power harvesting and multihop topologies. Due to space
constraints, we present Panda’s performance with varying
parameters (e.g., transmission power, message length) in [13].

A. Protocol Implementation

In accordance with Panda, the microcontroller builds the
discovery message and sends it to the low-power transceiver.
The message contains debugging information, the source ID
of the transmitting node, and the node’s capacitor voltage
(which is sampled from the ADC). Additionally, the message
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Fig. 5. (a) Power consumption for a node transitioning between the sleep,
receive, and transmit states, and back to sleep. (b) Panda’s discovery rate with
varying power budgets, Pb, and number of nodes, N .

includes the number of discoveries from each neighbor since
the initialization of the experiment, referred to as the node’s
neighbor table. The transmission duration of the discovery
message is 0.92ms.

In order to characterize the energy costs, we measure the
power consumption of the microcontroller and transceiver us-
ing an oscilloscope. Fig. 5(a) shows the power levels for a node
transitioning between the sleep, receive, and transmit states.
We compute the average power consumption and transition
energy for each state, with values summarized in Table I.

We note that the transition times to and from the sleep
state are non-negligible (in some cases a few ms). To account
for this, these transition times are considered as part of the
sleep state and, are therefore, subtracted from the actual
sleep duration. We elaborate further on the importance of
incorporating these switching costs in [13].

The parameters in Table I compose the inputs to the PCA,
which computes the rate of the exponential sleep λA and the
duration of the listen state lA as well as an expected discovery
rate UA. These configuration parameters are loaded into the
nodes for experimental evaluation in which we observe the
discovery rate as well as the power consumption.

B. Testbed and Experimental Setup

We consider networks of 3, 5, and 10 nodes (N = 3, 5, 10).
We consider power budgets of Pb = 0.15, 0.3, 0.5mW;
these are aligned with other solar harvesting budgets [7].
Initially, to confirm the practicality of Panda when assumptions
(A1), (A2), and (A3) hold, we place the nodes in close
proximity with a homogenous power budget. In Section VII-F,
we will evaluate Panda-Dynamic (Panda-D) and relax these
assumptions by considering a multihop topology and non-
homogenous power harvesting.

To facilitate experimental evaluation with up to N = 10
nodes, in addition to an EH node shown in Fig. 1(b), we
also incorporate nodes powered by AAA batteries into the
experiments. Both the EH node and the node powered by AAA
batteries operate using the same configuration parameters and
hence have identical behaviors. However, we carefully logged
the power consumption of the EH node by including control
information in the discovery message.

We utilize a listening node consisting of a microcontroller
and a transceiver set to a promiscuous sniffing mode to log
experimental results. Powered by a USB port on a monitoring
PC, the listening node reports all received messages to the



TABLE I
MEASURED PROTOTYPE PARAMETERS.

Param. Pt Pr M Csr Crs Ctr

Value 59.23mW 64.85mW 0.92ms 74.36µJ 13.48µJ 4.83µJ

TABLE II
PANDA EXPERIMENTAL PARAMETERS: (λA, lA) GENERATED USING THE
PCA FOR EVERY INPUT (N,Pb) PAIR AND THE RESULTING ANALYTICAL

(UA) AND EXPERIMENTAL (UE ) DISCOVERY RATE.

N Pb

(mW) λ−1
A (ms) lA(ms)

Duty
Cycle
(%)

UA

(Disc./s)
UE

(Disc./s)
Error
(%)

Run
Time
(h)

3
0.15 1778.68 2.066 0.168 .0039 .0038 -1.35 36
0.3 887.39 2.070 0.336 .0156 .0154 -1.23 36
0.5 530.88 2.075 0.561 .0434 .0438 1.07 48

5
0.15 1777.18 2.068 0.168 .0130 .0132 1.43 96
0.3 885.91 2.075 0.337 .0519 .0518 -0.33 60
0.5 529.43 2.084 0.564 .1443 .1427 -1.15 18

10
0.15 1773.49 2.075 0.169 .0584 .0589 0.89 18
0.3 882.32 2.089 0.340 .2332 .2341 0.38 18
0.5 525.97 2.107 0.572 .6470 .6510 0.62 18

PC for storage and post processing. The experimental dis-
covery rate, UE , is computed by dividing the total number
of discoveries since the initialization of the experiment by
the experiment duration. Clearly, the time until which the
experimental discovery rate converges depends on the rate
of discovery. Based on empirical results, all experiments are
conducted for up to 96 hours (see [13] for details).

The light levels are set to correspond to each of the
power budgets, Pb. However, the performance of the solar
cells vary significantly due to external effects such as aging,
orientation, and temperature [3]. To mitigate these affects and
facilitate repeatable and controllable experiments, we designed
a software controlled light system which we describe in [13].

Additionally, as mentioned in Section III, the prototype is
not power aware. That is, although we can accurately measure
the power harvested by the solar cell, it is difficult to control
the energy actually stored in the capacitor, due to numerous
inefficiencies of the harvesting circuitry, which are further
described in [13]. As such, we empirically estimated the
harvesting inefficiency to be 50% and adjust the light levels to
provide each node energy according to the value of Pb chosen.

C. Discovery Rate

For each (N,Pb) pair, we evaluate Panda, with the exper-
imental parameters summarized in Table II. First, we note
that Panda’s duty cycle is typically between 0.1–0.6%, which
is significantly lower than the duty cycles considered in
related protocols [9]. Additionally, note the accuracy of the
analytical discovery rate, UA, computed from (2), compared
to the experimental discovery rate, UE . On average, the error
between them is ≈ 1%. This confirms the practicality of Panda
and the model described in Section III.

In Fig. 5(b), we plot the experimental and analytical dis-
covery rate for each value of (N,Pb) shown in Table II
and observe the effect of varying N and Pb. As expected,
the discovery rate increases as Pb increases. The number of
nodes N is directly correlated with the discovery rate, as
indicated in (2) and (3). As such, the discovery rate increases
as N increases. Additionally, by tracking each nodes’ neighbor

table, we confirm that all nodes discover one another and
exhibit similar per link discovery rates (see [13] for details).

D. Discovery Latency and Comparison to Related Work

The discovery latency is the time between consecutive
discoveries for a directional link. It can be an important
parameter for numerous applications where nodes are only
within communication range for short periods of time. Al-
though the objective of Panda is to maximize the discovery
rate, in Fig. 6(a), we show the CDF of the discovery latency
for each directional link in an experiment with N = 5 and
varying power budgets. Clearly, the average discovery latency
decreases as the average discovery rate increases. Thus, for a
higher power budget, the discovery latency decreases.

Previous work [10], [11], [14] focused on minimizing the
worst case discovery latency for a link. We compare the
discovery latency of Panda, shown in Fig. 6(a), to previous
work. However, as mentioned in Section II, previous work
considers a duty cycle constraint instead of a power budget
(Pb). To provide a means of comparison, we use the following
equation to relate the power constraint to a duty cycle.
Pb = Duty Cycle(%) · Average Active Power (mW) (17)

We compare to the deterministic Searchlight protocol [10],
which minimizes the worst case discovery latency [11]. We
also compare to the the well-known probabilistic Birthday
(BD) protocol [12]. To account for the power budget, we
modify these protocols based on (17) (with details explained
in [13]) and denote them as Searchlight-E and BD-E. Based
on previous work [11], we set the slot size for Searchlight-E
and BD-E to 50ms and add an overflow guard time of 1ms.

In Fig. 6(b), we compare the average discovery rate
for Panda vs. simulations of the Searchlight-E and BD-E
protocols. We found that Panda typically outperforms the
Searchlight-E and BD-E protocols by over 3x in terms of the
average discovery rate.8

Furthermore, in Fig. 6(c), we consider the worst case
discovery latency and show that although Panda has a non-
zero probability of having any discovery latency, for the
experiments we considered, the 99th percentile of discovery
latency outperformed the Searchlight-E protocol worst case
bound by up to 40%.

Note that the Searchlight protocol was proven to minimize
the worst case discovery latency. However, as shown through
our evaluation, Panda outperforms Searchlight-E by a factor
of 3x in terms of average discovery rate. Moreover, in most
cases (over 99%), the discovery latency is below the worst case
bound from Searchlight-E. This emphasizes the importance of
incorporating a detailed power budget, as is done in Panda, as
opposed to a duty cycle constraint.

E. Power Consumption

Using Panda, a node consumes power at a rate of up to
Pb (mW), on average. However, the power consumption is

8As described in [13], the simulations of Searchlight-E and BD-E do not
account for packet errors or collisions. As such, the discovery rates for these
protocols is likely to be lower in practice.
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stochastic, and therefore, it is expected that the energy stored
will vary over time. In Fig. 6(d), we show the capacitor
voltage over time for a node with N = 5 and Pb = 0.5mW.
Energy neutrality is demonstrated by the oscillation in the
energy level within the limits of the capacitor storage. Recall
from Section III that if the energy drains below a software
induced threshold of 3.6V, the node temporarily sleeps for
10s to regain energy. These periods of additional sleep affect
the discovery rate and, as indicated by the accuracy of the
experiments, these occurrences are rare. In [13], we describe
the implications of varying capacitor sizes (from 10-50mF).

F. Panda-Dynamic
We now evaluate Panda-D (described in Section VI). The

only input to Panda-D is the estimated power harvesting rate,
Pb = 0.15mW, and the capacitor voltage Vcap. From (16), the
average duration of the exponential sleep is then computed as,

1

λ
=

382.2238

Vcap − 3.5857
− 2.9843 (ms). (18)

Thus, the node scales its power consumption based on Vcap.
For example, at Vcap = 3.6V and 4V, the node will sleep on
average for 26.75 and 0.92 seconds, respectively.

To estimate the average sleep duration for a given node
in Panda-D, we compute the average value of Vcap over the
course of an experiment. Based on the this value, the average
sleep duration is estimated from (18).

Panda-D does not require a priori information of the number
of neighbors, N . Therefore, throughout this section, (A3)
is relaxed. Below, we observe the performance of Panda-D
first when (i) nodes remain in a clique topology with ho-
mogenous power budgets. Then we consider Panda-D (ii)
in a multihop topology (relaxing (A2)), and finally (iii) in
non-homogenous power harvesting scenario (relaxing (A1)).
Relaxing all assumptions together requires running a live real-
world experiment and is a subject of future work.
(i) Comparison to Panda: We first evaluate Panda-D with
an experimental setup similar to the one shown in Fig. 4.
Specifically, we consider a network of N = 3 nodes in close
proximity with a power harvesting rate of Pb = 0.15mW.

As shown in Fig. 7(a), the capacitor voltage for all 3 nodes
stays approximately near 3.8V. As described in Section VI,
the average power consumption at 3.8V is approximately
Pb. Therefore, in this scenario, Panda-D and Panda have
similar power consumption and discovery rates. As such, the
experimental discovery rate of Panda-D is within 1% of the
analytical estimate of Panda.

(ii) Multihop Topologies: Previously, we assumed that all
nodes form a clique topology with no packet losses (A2)
and the number of nodes N known (A3). Indeed, for the
experiments conducted above with a transmission power of
−10dBm, we found that nodes within ≈20m could be treated
as a clique topology with over 99% packet success rates.

However, to evaluate a non-clique topology and relax (A2)
and (A3), we manually reconfigured the transmission power
to −26dBm and set 3 nodes in a line topology with distance
between nodes 1-2 and 2-3 of 1.5m, as shown in Fig. 7(b). In
this configuration, nodes rarely receive messages from their
two-hop neighbors. Nodes run Panda-D and are given light
levels corresponding to the power harvesting rate of Pb =
0.15mW (as described in Section VII-B). After 50 hours, the
resulting discovery rate is shown on each link in Fig. 7(b).

The two extreme nodes (nodes 1 and 3) have very few
discoveries from one other, due to the distance between them.
However, the node in the middle (node 2) forms an effective
clique of size 2 with each of its neighbors. We therefore can
analyze the discovery rate per link. For example, the discovery
rate of the link between nodes 1 and 2 is 0.0051 disc./s, which
is within 1% of the analytical discovery rate for a clique with
N = 2 and Pb = 0.15mW. Therefore, even with non-clique
topologies, each link that is within communication range can
be analyzed as a network with N = 2. This implies that issues
such as the hidden-node problem do not significantly affect the
performance of Panda.
(iii) Non-Homogeneous Power Harvesting: We now consider
nodes 2–5 using Panda-D with light levels corresponding to
power harvesting of 0.075, 0.15, 0.225, 0.3mW, respectively.
Node 1 is a control node running Panda with Pb = 0.15mW
and N = 5.

For each of the 4 Panda-D nodes, the capacitor voltage,
Vcap, is shown in Fig. 8(a) and settles based on the power
harvesting. Variations in the settling voltage stem from the
dynamic average sleep duration at different power harvesting
levels. For example, node 5 is given a light level of 0.3mW,
and therefore, has a shorter sleep duration than node 2 (light
level of 0.075mW). Correspondingly, Fig. 8(b) shows the
neighbor table: entry (i,j) represents the number of discoveries
of node j by node i over the experiment duration. Due to non-
homogeneity, the discovery rate for each link depends on the
power harvested; nodes with larger power budgets discover
their neighbors, and are discovered, more frequently.

In [13], we treat each link with non-homogenous power
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Fig. 8. Panda-D experimental evaluation for non-homogeneous power har-
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harvesting as a clique (N = 2), and estimate its discovery rate;
the approximation is within 20% of the experimental value.

VIII. CONCLUSIONS AND FUTURE WORK

We designed, analyzed, and evaluated Panda, an ND pro-
tocol for EH nodes. By accounting for specific hardware
constraints (e.g., transceiver power consumption for trans-
mission, reception, and state switching), Panda adheres to a
power budget. Using renewal theory, we developed the Panda
Configuration Algorithm (PCA) to determine the nodes’ sleep
and listen durations which maximize the discovery rate; the
PCA achieves a nearly-optimal discovery rate (over 94%).

We evaluated Panda using TI eZ430-RF2500-SEH EH
nodes. The real-life accuracy was consistently within 2%,
demonstrating the practicality of our model. Furthermore,
Panda outperformed the closest related protocols Searchlight-
E [10] and BD-E [12] by achieving a discovery rate that was
up to 3x higher. Finally, we showed that a version of the
protocol, Panda-Dynamic, was able to adapt to scenarios with
non-homogeneous power harvesting and multihop topologies.

Panda can be readily applied to nodes with a non-
rechargeable battery, where the power budget is set based on
the desired lifetime. Future work will consider relaxing addi-
tional assumptions of our model. Primarily, we will attempt to
optimize Panda-D in the presence of nodes with heterogenous
power budgets in non-clique topologies.
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