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Abstract—Demand for content served by a provider can fluctuate with time, complicating the task of provisioning serving resources so

that requests for its content are not rejected. One way to address this problem is to have providers form a collective in which they pool

together their serving resources to assist in servicing requests for one another’s content. In this paper, we determine the conditions

under which a provider’s participation in a collective reduces the rejection rate of requests for its content—a property that is necessary

for such a provider to justify its participation within the collective. We show that all request rejection rates are reduced when the

collective is formed from a homogeneous set of providers, but that some rates can increase within heterogeneous sets. We also show

that, asymptotically, growing the size of the collective will sometimes, but not always, resolve this problem. We explore the use of

thresholding techniques, where each collective participant sets aside a portion of its serving resources to serve only requests for its

own content. We show that thresholding allows a more diverse set of providers to benefit from the collective model, making collectives

a more viable option for content delivery services.

Index Terms—Information services, network servers, modeling.
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1 INTRODUCTION

CONTENT providers profit from servicing their clients’
requests for their content. If a provider’s serving

resources (e.g., servers and bandwidth) are insufficient, it
will be forced to turn away a large number of requests
during periods when the content reaches its peak in
popularity. The amount of serving resources needed during
a peak period, however, is often much larger than what
would be needed on a regular basis. Hence, a provider that
provisions resources for these peak periods will pay for
equipment that sits by idly most of the time, reducing
profits.

A recent solution used by many providers has been to
contract third party content distribution networks (CDN)
that host and service their content during peak periods. The
provider, however, pays the CDN for its assistance, which,
again, can reduce profits. Instead of relying on CDNs during
peak periods, an overlooked alternative is for groups of
providers to form collectives and host one another’s content.
When the demand for content that originated at provider A
peaks, exceeding its own serving abilities, it can redirect
requests to other members of the collective whose available
serving resources can handle these requests. In return, when
the demand for content that originates at some other
provider peaks, provider A0s serving resources can be used
to help serve this other content.

It is well-known that systems that pool together
resources can outperform the performance of their indivi-
dual components. For instance, load can more easily be

balanced among the pooled resources and overloads
(dropping requests) are less likely to occur [1], [2], [3], [4],
[6]. The problem we consider here, however, has an
important distinction from these traditional works and
from the CDNmodel: Each service provider “profits” only from

requests for its own content. While the collective more
efficiently serves the aggregate demand (over all providers),
because a provider’s resources may be used to help serve
other providers’ content, there may not be enough resources
in the collective to serve its own client demand. This leaves
open the possibility that the rejection rate of requests for an
individual provider’s content can be higher within the
collective than if that provider operated in isolation. Since
the provider profits only from requests for its originating
content, this increase in rejection rate can deter its
participation in the collective. The Content Distribution
Internetworking (CDI) chart [7] at the IETF describes similar
concepts and requirements for interconnection of content
networks to collectives. The CDI model, however, lacks a
performance analysis of the benefits of such a system.

In this paper, we identify from a performance perspec-
tive when these collectives are a viable alternative. In
particular, we address the following questions:

. Under what conditions do all provider participants
in a collective benefit from their membership in the
collective?

. Are there any mechanisms that can be introduced
into the collective architecture that will increase the
range of conditions under which all participating
providers benefit?

To enable us to focus on the performance aspects of this
question, we start at the point where a set of providers have
agreed to form a collective, have made copies of one
another’s content, and can redirect requests for a particular
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content object to any server within the collective with
sufficient available capacity. When no server has available
capacity, the request is dropped.

For each provider in the collective, we compare the
rejection rate for its content (that it originated) when served
within the collective to when it serves its content in
isolation. Each provider is described in terms of its capacity
(number of jobs it can serve simultaneously) and its
intensity (the rate of requests for its content divided by
the rate at which it serves requests). We find that collectives
reduce rejection rates of all provider participants by several
orders of magnitude when the collective is formed from a
homogeneous set of providers with identical capacities and
intensities. However, even slight variations in intensity
among providers yield heterogeneous collectives in which
the lower intensity participants achieve significantly lower
rejection rates in isolation than within the collective.

We next consider whether all providers’ needs can be
met by growing the size of the collective, i.e., can the
rejection rate be brought arbitrarily close to zero by simply
increasing the membership to the collective? We identify a
simple rule that is a function of the average intensity and
the average capacity that determines whether the rejection
rate converges to zero or to a positive constant. A
convergence to zero implies that all providers would
benefit from participating in very large collectives. How-
ever, when the rate converges to a positive constant, some
providers may still be better off participating in isolation.

To accommodate providers whose rejection rates are
lower in isolation, we consider the application of thresh-
olding techniques within the collective. Thresholding
allows each provider to set aside a portion of its serving
resources to be used exclusively to service its own clients’
requests. We demonstrate that often, by appropriately
setting thresholds, all providers in a collective will experi-
ence lower rejection rates than when they operate in
isolation, even if this property did not hold within the
threshold-free version of that collective. Our work demon-
strates that, from a performance standpoint, collectives that
utilize thresholds often offer a viable, cheaper alternative to
overprovisioning or utilizing CDN services.

The rest of the paper is structured as follows: In
Section 2, we briefly overview related work. In Section 3,
we present our general model for server collectives. In
Section 4, we investigate performance of content delivery
services for fixed-rate sessions when considering collective
arrangements. We similarly evaluate elastic file transfers in
Section 5. Section 6 evaluates a suite of thresholding
techniques. We conclude and elaborate on open issues in
Section 7.

2 RELATED WORK

Several works analyze systems that pool server resources to
improve various performance aspects of content delivery.
For instance, studies [3], [4], [6] investigate the practical
challenge of maintaining consistency among distributed
content replicas. The study in [8] investigates the placement
of content in the network to minimize delivery latencies.
Other studies [1], [2] investigate load sharing policies.
These approaches keep the processing load on a set of hosts

relatively balanced while keeping redirection traffic levels
low. In the Oceano project [9], a provider owns and
maintains a pool of servers that can be deployed to service
businesses of various customers. After servers are allocated
to customers, each server is used exclusively by the
customers to whom it was allocated and cannot be shared.
An analytical study of systems in which servers are
spawned upon cutoff points of a single service demand
appears in [10]. A model in which a resource manager
distinguishes users into classes that can share a resource
first appears in [12]. More recently, the study in [11]
presented an algorithm to protect such classes from
overloads.

The goal in these previous works differs from ours in
that there is no notion of individual, competing objectives as
there is within a server collective. In other words, in these
other works, the only objective is to improve the greater
good of the entire system, whereas, in our work, each
provider has its own objective of minimizing the rejection
rate of its own content.

The problem of alleviating rapid and unpredictable spikes
in request demands (“flash crowds”) has generated much
attention recently. Jung et al. propose a reassignment of
servers within a CDN infrastructure to handle such events
[13]. Recent proposals in this area [14], [15], [16] solve this
problem using peer-to-peer methods, in which clients
communicate directly with one another to retrieve the
desired content. Here, clients have nothing to gain by serving
content. The effectiveness of these approaches simply relies
on the goodwill of those who receive content to also transmit
the content to others when requested to do so.

The Content Distribution Internetworking (CDI) charter
at the IETF is an initiative whose direction is closer to our
work. The CDI model concentrates on the definition of
requirements and concepts that allow interconnection of
CDNs for content delivery across different content net-
works [7]. The performance of these systems, however, has
not yet been analyzed. The analysis of server collectives
presented in this paper can apply to the CDI model.

3 COLLECTIVES GENERAL MODEL

In this section, we develop the model (Table 1) that allows
us to explore the fundamental performance tradeoff that
collectives offer to content providers. Namely, we investi-
gate if participating in a collective reduces the rejection rate
of requests for a provider’s content. To perform our
investigation, we develop a model that is simple, elegant,
and amenable to a performance analysis.

Our model of a server collective consists of commodities,
content providers, clients, servers, and sessions. Commod-
ities are the content/information goods offered by content
providers. For instance, multimedia lectures are the
commodities of an online course offering. The content
provider (or simply provider) is the entity that offers
commodities to customers via the Internet. A client requests
commodities, and a server interfaces with the network to
deliver commodities to clients. When a server accepts a
client request for a commodity, a session (or content transfer)
is initiated to deliver the content from the server to the
client. A server’s ability to deliver content is constrained by
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factors such as its processing capabilities (CPU cycle
consumption) and its access link bandwidth.1

To analyze the performance of collectives, we assume
that a set of providers has already agreed to form a
collective and has distributed each commodity to all servers
within the collective. A request can be served if there is a
server that can immediately process the job associated with
that request. Our model assumes that the network core is
well-provisioned such that the server’s processing capabil-
ities or its access link to the network are what limit the
number of jobs that can be served simultaneously. Hence, a
client’s location in the network does not affect the server’s
ability to serve that client.

An example of how a collective, once established, can
reduce the rate at which requests for a provider’s content
are rejected is depicted in Fig. 1. Servers s1, s2, and s3 are
deployed by three distinct content providers in both Figs. 1a
and 1b. The number of sessions a server can host
simultaneously is indicated by the number of boxes. Shaded
boxes indicate an active session and each clear box is a
resource that is available to process a session. In Fig. 1a,
three different providers operate in isolation (i.e., they do
not participate in a collective and do not host one another’s
content). The server labeled s3 cannot service both of the
two arriving requests and is forced to drop a request. A
logical view of the collective containing these three servers
is shown in Fig. 1b. Here, server s3 redirects the request it
cannot service itself to server s2, which has the capacity to
process the job associated with that request. As a result, by
participating in the collective, fewer requests for s3

0s content
are rejected.

The rejection rate is the metric used to evaluate a
provider’s content delivery service. While collectives can be
used to handle sudden spikes of demand, our focus is on
spikes that last for non-negligible portions of time, where
the rejection rate can be determined by observing the steady
state statistics of the serving system.

We consider a set of content providers Y ¼ fy1; y2; . . . yng,
where a given provider’s commodities are files whose
lengths are described by i.i.d. random variables. The set of
servers that belong to provider yi are modeled as a single
serving system, si. We refer to any commodity that
originated at provider yi as vi without loss of generality.
We develop separate models for two classes of content. The
first class consists of fixed rate transfers, such as streaming
audio or video, where each transfer consumes a fixed
amount of server bandwidth per unit time, such that the
length of a session is independent of the number of files
served concurrently by the server. The second class consists
of elastic transfers, such as data files, where the amount of
bandwidth consumed per transfer per unit time is inversely
proportional to the number of files served at that time by the
server. In both classes, the number of files that a server will
simultaneously transmit is bounded to ensure that transfer
rates proceed above a minimum rate. The maximum
number k of simultaneous sessions of a server is the server’s
capacity. The factors (CPU cycle consumption, access link
bandwidth, etc.) that constrain the ability to service sessions
typically determine the server’s capacity.

We define homogeneity as the property that, for a
collective, all providers’ intensities are equal and all
providers’ values of the maximum number of sessions a
provider operating in isolation can service (i.e., ki for the
ith provider) are equal as well. Thus, a collective is said to
be homogeneous when this property holds, otherwise, the
collective is said heterogeneous. Later in this paper, we will
see that this property plays an important role in identifying
collectives within which providers achieve smaller rejection
rates than are achieved in isolation.

We assume that a provider chooses to participate in a
collective as long as the rejection rate of requests for its
content is lower than when the provider operates in
isolation (comparative criterion).

4 COLLECTIVES UNDER FIXED-RATE TRANSFERS

Here, we construct and evaluate a model in which content
delivery sessions consist of fixed-rate transfers such as
delivery of streaming video.

For fixed rate transfers, we make a simplifying assump-
tion that each commodity (across providers) requires the
same rate of transfer, such that each server si is capable of
hosting a fixed number ki of sessions simultaneously, where
this number is independent of the set of commodities
currently being hosted. The request rate for each provider’s
commodities, vi 2 V, is modeled as a Poisson process with
rate �i and each request receives service immediately if the
number of simultaneous sessions is smaller than the
maximum ki. The service times for instances of transfers of
commodity vi are i.i.d. random variablesBi with meanE½Bi�
and are independent across the set of all commodities.
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1. In practice, licensing restrictions can place additional limitations on
the server side. For instance, RealNetworks [19] offers its basic streaming
server (free of charge) with a maximum capacity of five simultaneous
streams. Their $1,999-dollar license server (Helix Server—starter) has a
maximum capacity of 25 simultaneous streams. The maximum number of
sessions is then given by the maximum transmission throughput divided by
the average transmission rate of delivery sessions.

TABLE 1
Main Variables and Main Parameters of the Model



Since arrivals of requests for content delivery are
modeled as Poisson processes, each serving system is an
M=G=k=k queuing system. If the server in a collective cannot
host an arriving request for its commodity, the server
forwards the request to an available server (when one exists)
in the collective. Otherwise, the request is dropped. Note
that, if a server operates in isolation, then, when it has no
additional room to service a request, the request must be
dropped. Note that the collective can also be modeled as an
M=G=k=k queuing system with arrival rate

Pn
i¼1 �i, mean

service time ð
Pn

i¼1 �iE½Bi�Þ=ð
Pn

i¼1 �iÞ, and that can service
up to k ¼

Pn
i¼1 ki sessions simultaneously. The product

�iE½Bi� is the intensity �i of provider yi.

4.1 Computing the Rejection Rate of a Collective

We define pn;i to be the rejection rate of provider yi
0s content

in a collective composed of n servers (e.g., a set of providers
fy1; y2; . . . yng employing servers s1; � � � ; sn).2 A single
provider operating in isolation from other providers has
rejection rate denoted by p1;i, or simply p1. For provider yi in
isolation, i ¼ 1; . . .n, the Erlang loss formula (also known as
Erlang B formula) applies directly [17]:

p1 ¼
�k11 =k1!Pk1
j¼0ð�1Þ

j=j!
; ð1Þ

where �1 ¼ �1E½B1�.
We extend this formula to the rejection rate of a two-

server collective p2;i, i ¼ 1; 2. First, we define the random
variablesNi, i ¼ 1; 2 that describe the number of sessions for
each of the commodities vi, i ¼ 1; 2. Since such a loss system
is a symmetric queue [18], the stationary distribution for
each state P ðN1 ¼ x;N2 ¼ zÞ, where x ðzÞ is the number of
commodities of type v1 (v2) actively being processed, can be
expressed in product-form: P ðN1 ¼ x;N2 ¼ zÞ ¼ �x�zc2,

where �x ¼ �x1=x!, �z ¼ �z2=z!, and c2 is a normalizing

constant such that
P

x�0;z�0;zþx�k1þk2
�x�zc2 ¼ 1. Hence, we

find that the rejection rate of a two-server collective is

p2 ¼ P ðN1 þN2 ¼ k1 þ k2Þ

¼
Xn
x¼0

P ðN1 ¼ k1 þ k2 � x;N2 ¼ xÞ

¼
Xn
x¼0

1

x!
�x1

1

ðk1 þ k2 � xÞ! �
k1þk2�x
2 c2

¼ �1 þ �2ð Þk1þk2 1

ðk1 þ k2Þ!
c2;

ð2Þ

where �i ¼ �iE½Bi�, i ¼ 1; 2. Noting that (2) is in the form of

(1) with �1 replaced by �1 þ �2 and k1 replaced by k1 þ k2,

we can recursively repeat this process to compute the

rejection rate for a collective composed of n providers:

pn ¼ 1

ð
Pn

j¼1 kjÞ!
Xn
j¼1

�j

 !Pn

j¼1
kj

cn; ð3Þ

where cn is once more the normalizing constant for this

distribution such thatX
x1�0;x2�0;...;

Pn

j¼1
xj�
Pn

j¼1
kj

P ðN1 ¼ x1; . . . ; Nn ¼ xnÞ ¼ 1:

4.2 Evaluation of Scenarios under Fixed-Rate
Transfers

We begin by evaluating collectives as a function of number

of participating providers and the provider intensities.

Fig. 2a plots rejection rates of n-provider systems pn,

n ¼ 2; 5; 10, where each server can simultaneously service

100 commodities (ki ¼ 100, i ¼ 1; 2). The results are a direct

application of (3).
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2. Whenever 8yi; yj 2 Y; i 6¼ j; pn;i ¼ pn;j, pn;i can be written simply as pn.

Fig. 2. Evaluation of collectives under the model of fixed-rate transfers. (a) Rejection rate in collectives scenario compared to servers in isolation.

(b) Areas of comparison between two-server collectives and servers in isolation.

Fig. 1. Collective example compared to systems in isolation.



First, we fix the configurations of providers y1; y2; . . . ; yn�1

while we vary the traffic intensity of provider yn. We are
interested in observing how the rejection rate of a provider
in a collective of size n is affected when a single provider’s
rate is varied. We set �i ¼ 65 for each provider whose
intensity is fixed. This value is chosen such that requests for
vi exhibit a rejection rate of approximately 10�5 when yi
operates in isolation, 1 � i < n. On the x-axis, we vary �n,
the provider intensity for provider yn. The y-axis plots
rejection rates for various system configurations. The curve
labeled “yn in isolation” depicts the rejection rate of
requests for commodities vn when provider yn operates in
isolation. The constant line at p1 � 10�5, labeled “y1 in
isolation,” plots the rejection rate of requests for provider
y1s content when y1 operates in isolation (results for
providers y2; � � � ; yn�1 are identical). The remaining curves
labeled “n servers,” n ¼ 2; 5; 10, depict the rejection rate for
all providers that participate in an n-provider collective.
From the figure, we observe that:

. For the range of values of �n shown, the rejection in
the collective for commodity vn is smaller than its
rejection rate in isolation. Therefore, regardless of its
own intensity, a provider is willing to participate in
a collective when the other providers have suffi-
ciently low intensities.

. Ranges for �n exist, 0 � �n � 110, 0 � �n � 175, and
0 � �n � 330 for n ¼ 2; 5; 10, respectively, where the
rejection rate in the collective for commodity vi; i < n
is smaller than the rejection rate when si operates in
isolation. Hence, the collective benefits provider yi,
i < n even when all other providers in the collective
have larger provider intensities. In particular, to
achieve a given rejection rate, �n needs to be
increased significantly as n increases.

. When �n assumes higher values, the dropping
probability for commodities becomes excessive and,
according to the described criteria, yi, 1 � i � n,
would prefer to withdraw its participation from a
collective.

Fig. 2b graphically depicts the “areas of participation
willingness” for two providers. In this figure, we consider a
systemwith twoproviders, y1 and y2,where ki ¼ 100; i ¼ 1; 2.
A two-server collective generates a two-dimensional picture
as shown in Fig. 2b. We vary �1 and �2 on the x and y-axis,
respectively. The top curve that goes from the bottom-left to
the top-right of the graph is the set of values of ð�1; �2Þ,
where content provider y1 experiences the same rejection
rate regardless of whether it operates in isolation or
participates within the collective, i.e., p1;1 ¼ p2. Above this
curve, p1;1 < p2, i.e., provider y1

0s rejection rate is lower
when operating in isolation. Conversely, below this curve,
p1;1 > p2, i.e., provider y1

0s rejection rate is lower when
forming a collective with provider y2. Similarly, the lower
curve that runs from the bottom left to the top right is
formed from the points where p1;2 ¼ p2. Below this curve,
p1;2 < p2 and, above, p1;2 > p2.

In Fig. 2b, each area is labeled to indicate the “will-
ingness” of y1 and y2 to form a collective. A label of “Li,”
i ¼ 1; 2, indicates an area in which rejection rate for yi

0s
content is smaller in a collective than in isolation, i.e.,

p2 < p1;i. The pair of labels “L1,” “L2,” are replaced by “L,”
for simplicity. We see that there is a significant region in
which both providers can benefit simultaneously by
participating in a collective. In this case, both rejection rates
are each lower when both form a collective than when each
provider operates in isolation. We refer to a win-only
property when, for the providers of a collective, every
provider’s rejection rate is smaller in the collective than in
isolation. We note, however, that both providers tend to
benefit only in “near-homogeneous” configurations (in this
case, defined by the line �2 ¼ �1), especially when inten-
sities range from moderate to high. As the difference in
intensities widens, the win-only property ceases to hold. In
fact, we observe a rapid increase in the rejection rate in
Fig. 2a for a collective of two servers as �n is increased in the
range 85 � �n � 150. In addition, we note that there is no
area in which the rejection rates of both content providers
are higher in the shared system than in isolation.

4.3 Asymptotic Limits of Collectives: The �=k Factor

We turn to the performance of an n-server collective as the
number of servers n tends to 1. In practice, a very large
collective requires also very large storage units in each of
the collective participants since all participants must store
all other participants’ commodities. There are, however,
important insights to be gained from studying the impact
on performance as a collective grows. In fact, our results
reveal that a rejection rate for providers forming a collective
can be close to the asymptotic limit, even for a small
number of providers forming the collective.

We assume that there are nc different classes of
providers, where all provider systems in the same class
exhibit the same provider intensity �i and have the same
bound ki on the number of jobs that can simultaneously be
serviced. We let fi represent the fraction of providers in
class i; 1 � i � nc. Equation (3) can be reformulated as

pn ¼

Pnc

j¼1
ðnfj�jÞ

� �Pnc

j¼1
nkjfj

Pnc

j¼1
nkjfj

� �
!

PPnc

j¼1
nfjkj

i¼0

Pcn

j¼1
ðnfj�jÞ

� �i

i!

; ð4Þ

which is simplified via the constants �̂� ¼
Pnc

j¼1 fj�j and k̂k ¼Pnc

j¼1 fjkj to

pn ¼ ðn�̂�Þnk̂k=ðnk̂kÞ!Pnk̂k
j¼0ðn�̂�Þ

j=j!
:

As n tends to 1, the asymptotic limit of the rejection rate
is [20]:

lim
n!1

pn ¼ 0; if �̂�=k̂k � 1
1� k̂k=�̂�; if �̂�=k̂k > 1:

�
ð5Þ

Fig. 3 illustrates the behavior of an n-server collective as n
grows large. For clarity of presentation, we show only the
case where only one class of servers exists, i.e., nc ¼ 1, in
which each provider’s system can simultaneously handle
k1 ¼ k ¼ 100 transmissions. In this case, the average
intensity is simply referred as � ¼ �1 ¼ �̂�. In Fig. 3a, we
vary the number of participating providers along the x-axis,
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plotting the rejection rate along the y-axis, where each curve
depicts a collective with the corresponding intensity �. We
use (3) to plot the curves for � ¼ 95, � ¼ 100, and � ¼ 120.
The asymptotic limits are marked with two distinct points.
Using (5), the asymptotic limit for � ¼ 100 is effectively 0,
and for � ¼ 120, the limit is approximately 1=6. The
asymptotic limits observed here fit the claims of (5). In
particular, for � < k, the rejection rate converges to 0,
whereas for � > k, we observe the rejection rate converging
to the limit 1� k=�. The figure demonstrates (for a
homogeneous collection of providers) that the providers
benefit from joining a collective with a small number of
providers, and that increasing the number of providers in
the collective further reduces rejection rates, but at a rate
that diminishes quickly.

In Fig. 3b we apply (5) to plot the rejection rate of a
collective for the limit as the number of providers grows
infinitely large as a function of �. The curve on the left is the
asymptotic rejection rate for the case where k ¼ 20. We
consider only � � k ¼ 20. The curve on the right is for the
case where k ¼ 120. Again, we consider only � � k ¼ 120.
We notice for k ¼ 120 a slower increase in the asymptotic
rejection rate. We see that the rejection rate converges more
slowly and less abruptly (i.e., there is less of a knee) for
larger values of k.

In conclusion, even when participants in a collective are

homogeneous but individually overloaded (�i > ki), their rejection
rate for requests for their content remains bounded (below) by
1� k=�.

5 COLLECTIVES FOR ELASTIC TRANSFERS

In the previous section, we focused on performance benefits
for providers forming a collective where their content
distribution services are fixed-rate transfers. In this section,
we focus on performance benefits for providers forming a
collective where their content distribution services are
elastic transfers such as file transfers using TCP/IP. We
consider collectives that receive traffic whose service rate is
proportional to 1=wn, where wn is the number of customers
served simultaneously across all n servers that comprise the
collective. For such a model, load is equally balanced across
the collective. This can be accomplished in practice, for
instance, with parallel downloading technology [21], which

is commonplace today in peer-to-peer downloading tools
such as Kazaa.

We again consider a model in which client arrivals to
each provider are described by a Poisson process and the
load imposed by each commodity is described by a general
distribution. Using the same argument as before, we
collapse the model to the case where each provider offers
a single commodity and uses a single server. The processor
sharing (PS) service model applies here since the transmis-
sion rate is inversely proportional to the number of requests
in service. We assume that each server si bounds the
minimum rate at which it will transmit data to clients by
bounding the number of clients accepted by a constant, ki,
and will turn away (or redirect) any additional clients
requesting service. In the context of parallel downloading,
the sum of all fractional components serviced should add
up to

Pn
i¼1 ki. Therefore, a server is modeled as an

M=G=1=ki=PS queue and a collective modeled by an
M=G=1=k=PS queue, where k ¼

Pn
i¼1 ki. We assume, with-

out loss of generality, that work for delivering yi
0s content in

isolation is processed at a rate equal to the maximum
number of simultaneous sessions ki and for a collective at
rate k. As before, we assume that jobs are never queued
when service is unavailable, but are simply turned away
(dropped). In addition to rejection rate as a metric, we also
measure job completion time.

The amount of work necessary for a job processed by the
server collective is a random variable U . For an n-server

collective, the servicing time B̂Bn for each individual job in
the collective is B̂Bn ¼ U=k. Since the servicing time B̂B1

obtained with a single provider in isolation is B̂B1 ¼ U=k1,
B̂Bn is a function of the servicing time, B̂B1, such that
B̂Bn ¼ k1B̂B1=k. While the distribution of an unbounded
queuing system that uses a processor sharing discipline is
known to be geometric [17], for a finite queuing system, we
find the following law:

pn ¼ ð�E½B̂Bn�Þk
1� �E½B̂Bn�

1� ð�E½B̂Bn�Þkþ1
; ð6Þ

where � ¼
Pn

j¼1 �j (�j is the request rate for commodity vj)
and E½B̂Bn� is the mean servicing time of a job processed by
the collective. Here, the intensity is � ¼ �E½U�, where
E½U � ¼ kE½B̂Bn�.
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Fig. 3. Asymptotic observations on rejection rate for fixed-rate transfer collectives. (a) Rejection rate when increasing the number of providers.

(b) Asymptotic rejection rate for n ! 1.



Since, for elastic transfers, the service rate is inversely
proportional to the number of simultaneous transfers, the
completion time is also a metric of interest. For a collective
formed from n providers, the expected completion time of a
session dn is obtained using Little’s Law, in terms of the
fraction of requests accepted to the system ð1� pnÞ�. We let
the number of concurrent, servicing sessions be a random
variable N . Using Little’s law, we find,

dn ¼ �wnwn

ð1� pnÞ�
; ð7Þ

where �wwn is the expected number of simultaneous sessions,
�wwn ¼

Pk
z¼0 zP ðN ¼ zÞ.

5.1 Numerical Evaluation

Here, we study conditions under which providers are
willing participants within a collective that consist of
providers whose transfer rates are elastic. As in Section 3,
we again compare a provider’s rejection rate when forming
a collective with other providers to its rejection rate when
operating in isolation. For instance, Fig. 4 illustrates a
scenario in which we vary �1 and maintain �2 fixed at
�2 ¼ 91. Here, k1 ¼ k2 ¼ 100. Figs. 4a and 4b plot the
rejection rate and average completion time, respectively,
of the providers in collectives as well as of providers in
isolation as a function of �1. The curves labeled “collective,”
“y1 in isolation,” and “y2 in isolation,” respectively, plot p2,
p1;1, and p1;2 (the last being constant). We observe the
rejection rate of providers within the collective to be almost
4 orders of magnitude smaller than p1;1 when �1 and �2 are
approximately equal. However, the benefits become mar-
ginal with increasing j�1 � �2j. This again supports the
intuition that a collective is useful for elastic transfers only
when the intensities imposed by providers are approxi-
mately the same.

We observe from Fig. 4b that the conclusions for
completion time similar to those obtained for the rejection
rate. We vary the intensity �1 along the x-axis. The average
completion time is shown along the y-axis. The curves
labeled “collective,” “y1 in isolation,” and “y2 in isolation,”
respectively, plot the average completion time for each
provider within the collective, for provider y1 in isolation,
and provider y2 in isolation. The average completion time for
a request to provider y2

0s commodity is reduced significantly

when �1 � 80. This reduction occurs because jobs for
provider y2

0s content are likely to receive treatment from
y1

0s underutilized resources. In the range 80 � �1 < 100,
provider y1

0s average completion time is reduced signifi-
cantly. Thus, this range is important because provider y1 and
y2 both benefit from participating in the collective. For
�1 > 100, provider y1 can still obtain dramatically lower
completion times within a collective, as low as a sixth of its
completion time in isolation, but provider y2

0s average
completion time is greater than in isolation. Therefore,
provider y2 will not be willing to form a collective.

Fig. 5 depicts willingness areas for elastic transfer
services computed via application of (6). The parameters
�1 and �2 are varied respectively along the x and y-axis. We
use the same labeling convention as in Section 4.2. In
comparison to Fig. 2b, we see that a collective in elastic
environments favors both providers for a wider variation of
their respective intensities when both intensities are small
(i.e., the bubble in the bottom-left corner is bigger).
However, when intensities are large, the difference in
provider intensities over which both providers are willing
to form a collective is reduced. Intuitively, this may be due
to the fact that, when the system is under high loads, the
average completion time of a job increases. Bringing in
additional capacity (but with a proportional load) does not
reduce completion times of admitted jobs significantly
when load is high. It will, however, reduce completion
times when load is light. Since a collective formation is most
useful when intensities are high (e.g., in Fig. 5, the bulb does
not stretch as much as in Fig. 2), we conclude that
collectives can tolerate more heterogeneity in systems when
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Fig. 4. Evaluation of a collective for elastic transfers. (a) Rejection rate under a processor sharing discipline. (b) Mean completion time under a

processor sharing discipline.

Fig. 5. Area of benefit for collectives under processor sharing discipline.



servicing fixed-rate requests than when servicing elastic-
rate requests.

6 RESOURCE BOUNDING WITH THRESHOLDS

Here, we evaluate thresholding techniques as a means to
limit the amount of server resources that a provider
contributes to a collective. We show how thresholding can
be used to bound rejection rates of providers, thereby
encouraging participation within a collective system. Such
schemes can be used in either fixed-rate or elastic transfers.
Here, we perform the analysis using fixed-rate transfers.

Let hi be a threshold, 0 � hi � ki, for server si such that
si refuses any requests to service other provider’s
commodities whenever it is actively servicing hi commod-
ities of other providers. This guarantees that the provider
will maintain space to simultaneously service at least
ki � hi requests of its own commodity at any given time.
We call this threshold type D1. We also evaluate a second
thresholding technique, named D2-thresholding. A D2 type
threshold denies a request at server si for another
provider’s commodity vj, j 6¼ i, whenever the available
space for commodity transmission at server si falls below
hi (i.e., ki � xi, where xi is the number of sessions in
service). An advantage of D2 over D1-thresholding is a
stronger protection for a provider service when its
intensity is high, since it can reject requests for commod-
ities other than its own even if no job associated with
these commodities is in service. For both types of
thresholding, setting hi ¼ 0, 1 � i � n is equivalent to
n providers operating in isolation and setting hi ¼ ki for
all i is equivalent to a collective described in previous
sections where providers fully share their resources.

We also consider a third thresholding technique, D3-
thresholding, in which a provider’s threshold is a function of
its average number a of sessions redirected to other
provider’s servers. Under D3-thresholding, a provider
accepts a number h of sessions for content other than its
own, such that h � aþ ~aa, where ~aa is a tolerance value beyond
the average number a of redirected sessions. This type of
tolerance value allows providers to redirect requests when
their average number of redirected sessions is greater than a
but still within a range defined by the tolerance value ~aa.
Besides, allowing for variation in the level of tolerance set by
the value of ~aa, this formulation permits a “bootstrap” of the
process of redirecting sessions when the average number of
redirected sessions is zero, i.e., when a ¼ 0. If a provider’s
ability to redirect requests to other providers’ servers is
bounded by a, then, when a equals zero, a provider does not
permit utilization of its resources.

All three types of thresholding can be implemented with
or without switching. When switching is implemented, a job
for provider i0s that is assigned to a server j 6¼ i can be
moved back to i as soon as there is an available process at
server i, i.e., jobs are always moved to their preferred server
when there is room. In practice, enabling switching entails
additional overhead, but, for analytical purposes, the model
is more tractable. We shall see shortly (comparing simula-
tion results) that enabling switching has little impact on
rejection rate, so that the analytical results obtained when
switching is allowed are a good approximation for models
in which switching is not permitted.

6.1 Analytical Evaluation of D1 Thresholding

D1-thresholding is a coordinate-convex sharing policy,
thus, a product-form solution is still valid under general
service time distributions [11]. However, for a simplified,
comprehensible analysis, we assume that service times are
exponentially distributed at rate �i, 1 � i � n.3 This allows
us to model the two-provider collective as a truncated
Markov chain with states described by the pair ðN1; N2Þ,
where Ni is the number of sessions servicing commodity vi
in the system, i ¼ 1; 2, 0 � N1 � k1 þminðk2 �N2; h2Þ, and
N2 � k2 þminðk1 �N1; h1Þ. A crucial difference from pre-
vious models is that, here, since a provider’s decision to
accept a request depends on whether the commodity being
requested belongs to the provider, the rejection rates for the
differing commodities can differ within a collective. The
Markov chain transitions are as follows:

. From ðx� 1; zÞ to ðx; zÞ with rate �1, for

1 � x � k1 þminðk2 � z; h2Þ:

. From ðx; zÞ to ðx� 1; zÞ with rate x�1, for

1 � x � k1 þminðk2 � z; h2Þ:

. From ðx; z� 1Þ to ðx; zÞ with rate �2, for

1 � z � k2 þminðk1 � x; h1Þ:

. From ðx; zÞ to ðx; z� 1Þ with rate z�2, for

1 � z � k2 þminðk1 � x; h1Þ:

A product-form solution is derived:

P ðN1 ¼ x;N2 ¼ zÞ ¼ �x;z ¼ �x�zc2;

where �x ¼ �x1=x!, �z ¼ �z2=z!, and c2 is a normalizing

constant such that
Pk1þh2

x¼0

Pk2þminðh1;k1�xÞ
z¼0 �x;z ¼ 1.

We use the probabilities �x;z to compute the probabilities
of all states for which Ni ¼ ki þminðkj � w, hjÞ, given that
Nj ¼ w, i ¼ 1; 2, j ¼ 1; 2, j 6¼ i. The rejection rate of provider
y1

0s content in the collective, p2;1, is:

p2;1 ¼
Xkiþhj

x¼ki�hi

�x;kiþkj�x þ
Xkj�hj�1

z¼0

�kiþhj;z

¼
Xkiþhj

x¼ki�hi

�i=�ið Þx

x!

�j=�j

� �kiþkj�x
c2

ðki þ kj � xÞ! þ

�i=�ið Þkiþhj

ðki þ hjÞ!
Xkj�hj�1

z¼0

�j=�j

� �z
z!

c2:

ð8Þ

The rejection rate of provider y2
0s content in the collective,

p2;2, is obtained in analogous manner (not shown here for
space limitations).

Fig. 6 depicts respective rejection rates experienced for
requests of content of both providers y1 and y2 for various
intensities and threshold levels under D1-thresholding with

VILLELA AND RUBENSTEIN: PERFORMANCE ANALYSIS OF SERVER SHARING COLLECTIVES FOR CONTENT DISTRIBUTION 1185

3. Note that our reduction of a provider’s server system to a single server
with a single commodity still holds without loss of generality.



switching, where providers y1 and y2 apply the same
threshold, i.e., h1 ¼ h2. Each of them has a server with total
capacity for ki ¼ 100, i 2 f1; 2g, concurrent sessions. On the
x-axis, we vary �1. Instead of fixing �2, we set �2 ¼ 0:2�1 such
that the intensities that both providers contribute to the
collective increase along the x-axis, but y1

0s intensity remains
much larger than that of y2. The various curves depict
rejection rates for the twocommodities fordiffering threshold
levels. The curves for the systems in isolation are represented
with thicker lines. The curve labeled “totally shared” is the
rejection rate for both commodity requests when the thresh-
olds are set tomaximumvaluesh1 ¼ h2 ¼ 100. The remaining
curves’ labels indicate the provider whose content’s rejection
rate is plotted and the value to which the threshold is set.

The most important conclusion here is that changing the
threshold value can lead to significant variations in rejection
rate for a collective. In fact, when the intensity of a provider
is small enough that the provider can meet its desired
rejection rate operating by itself, that provider can then use
thresholds in a collective to allow other content providers
the use of its resources without raising its own rejection rate
above the undesired level.

6.2 Comparison of Thresholding Techniques

We resort to simulation to evaluate nonswitching andD2 and

D3-threshold configurations.Wemodel arrivals by a Poisson

process, but service times here are described by a lognormal

distribution, as has been observed in practice [22], [23], [24],

[25]. The probability density function of the lognormal

distribution is given by e� logðxÞ��ð Þ2=ð2�2Þ

x�
ffiffiffiffi
2�

p , where logðxÞ is the

natural logarithm and � and � are the standard parameters

used within the lognormal distribution. We used the mean

and standard deviation of 26 and 46 (minutes) observed in

[22], respectively, to derive the parameters � and �.
Based on measurements from [22], we conduct simula-

tionswith� ¼ 3:5 requestsperminuteandE½B� ¼ 26minutes
giving a value �2 ¼ 91 for provider y2

0s content. Fig. 7 plots
rejection rates obtained from the previous analysis ((8), for
the case of D1 thresholding with switching) and simulations
(for the other cases) in which hi ¼ 40 for i ¼ 1; 2. Fig. 7a
plots rejection rates for provider y1

0s content and Fig. 7b
plots rejection rates for provider y2

0s content. Here, �1 is
varied along the x-axis in both Figs. 7a and 7b. The curves in
each figure labeled “D1+switching,” “D1+nonswitching,”
“D2+switching,” and “D2+nonswitching” depict the var-
ious collective thresholding configurations formed by
alternating between the use of nonswitching and switching
methods and between the use of D1 and D2 thresholding
techniques.

In Fig. 7a, we observe little difference in rejection rate for
provider y1

0s content for the varied configurations. In
Fig. 7b, we observe the rejection rates of provider
y2

0s content. The horizontal line depicts the rejection rate
for provider y2

0s content when y2 operates in isolation. For
�1 < 40 the two curves with sharp increases correspond to
the collective with D2-thresholds. The two curves are
indistinguishable except for �1 > 100 where the switching
system exhibits a rejection rate that is slightly lower than
the nonswitching system. The two curves with sharp
increases in the range 60 < �1 < 100 correspond to the
collective with D1-thresholds. When operating in the
collective, the rejection rate for provider y2

0s content drops
by as much as three orders of magnitude in the range
where �1 < 50 using D2 and �1 < 100 using D1-thresholds.
In the range �1 > 100, the rejection rates for provider y2
converges to the rejection rate when provider y2 operates in
isolation. This is because �2 is sufficiently high to make it
unlikely that the number of sessions delivering provider
y2

0s content places the available space at y2
0s server below

its threshold h2. In contrast, when using D1-thresholding,
the exhibited rejection rates are much lower than those
exhibited when using D2 thresholding when �1 < 100.

We further observe that there is little difference in the
results obtained when ongoing session switching is enabled
from when it is not. This suggests that analytical results for
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Fig. 6. Respective rejection rate experienced on requests for providers

y1 and y2s
0 content and different thresholds.

Fig. 7. The use of D1-thresholding and D2-thresholding/switching. (a) Rejection rate of provider y1
0s content. (b) Rejection rate of provider y2

0s content.



rejection rate from a switching system can be used to
approximate the rejection rate within nonswitching systems.

Fig. 8 depicts a comparison between the performance of
D1 and D3-thresholding. We apply the same simulation
experiments used to compare performance of D1 and D2
thresholding. Provider y2

0s intensity is kept constant at
�2 ¼ 91, while �1 is varied. To remain consistent with
previous parameters, both providers y1 and y2 are set to
configurations in which ki ¼ 100 and hi ¼ 40, i 2 f1; 2g. The
tolerance value is ~aa ¼ 10. Fig. 8a shows the rejection rate of
provider y1

0s content, whereas Fig. 8b shows the rejection
rate of provider y2

0s content.
We observe that the main difference in the perfor-

mance obtained with D3-thresholding compared to using
D1-thresholding (and, also, to using D2-thresholding) is
that D3-thresholding only allows a reduction of rejection
rate of provider y2

0s content by no more than one order of
magnitude in the range where �1 is low, such as �1 < 50.
In this range, provider y2 can only reduce its rejection rate
up to a limit approximately given by ~aa. This happens
because, for low values of �1, provider y2 does not
redirect much of its incoming requests, hence, the average
number a of redirected sessions for provider y1 is low
and the threshold is limited by aþ ~aa. In contrast, in the
range 50 < �1 < 80, provider y1 can offer larger thresholds
to provider y2. As a result, we observe a larger reduction
of the rejection rate of provider y2

0s content from its
rejection rate when provider y2 is in isolation. For high
values of �1, rejection rates obtained with D3-thresholding
for both providers are similar to ones respectively
obtained using D1-thresholding. This comes as a result
of the use of the extra allowance ~aa which reserves space
in providers for content different than their own
commodities in the same fashion as D1-thresholding does.

6.3 Extending Heterogeneity

Thresholding encourages providers to participate in collec-
tives with performance benefits where the same providers
are unwilling to participate in a collective without any
thresholding. Applying the comparison between rejection
rate obtained in isolation and the rejection rate obtained in a
collective, we can find the potential areas of interest for
two providers, y1 and y2, when using the same pair of
thresholds. We wish to determine if provider y1 performs
better in isolation than in a collective with y2, and vice

versa, given their respective intensities, �1 and �2, and
threshold values, h1 and h2 (D1-thresholding). We perform
an exploration similar in form to that used in Section 4.2,
but now the collectives are formed with restrictions given
by the two thresholds, h1 and h2, and the rejection rates are
obtained using (8). We show in Fig. 9 how forming a
collective can bring benefits to both providers under more
heterogeneous conditions for providers y1 and y2. The
intensity �1 is varied along the x-axis and the intensity �2 is
plotted along the y-axis. The area between the curves
labeled “h1 ¼ h2 ¼ 100” is the set of values for �1 and �2
where both y1 and y2 share without restrictions. The area
between curves labeled “h1 ¼ h2 ¼ 4” and “h1 ¼ h2 ¼ 2”
indicate values of �1 and �2 for which both providers are
using the same value of threshold, i.e., only up to four slots
or two slots, respectively, can be used to serve a content for
the other provider. All these areas have in common that
both providers have smaller rejection rates than their
rejection rates in isolation, i.e., these are “win-only” areas.
We conclude from the shown curves that thresholding
indeed extends the heterogeneity tolerated for establishing
collectives. However, the two providers do not necessarily
need to have the same threshold values.

6.4 Optimal Thresholding

Motivated by the results in previous sections, we consider
an ideal scenario in which a provider, yi, selects its optimal
threshold as a function of the providers’ intensities imposed
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Fig. 8. Comparison of D1-thresholding and D3-thresholding/switching. (a) Rejection rate of provider y1
0s content. (b) Rejection rate of provider

y2
0s content.

Fig. 9. Extending heterogeneity using thresholds.



on the collective. By doing so, it contributes the maximum
amount of its own server resources (i.e., the highest
threshold possible) without the rejection rate for its own
commodity, vi, exceeding a value li.

We apply our analysis of D1-type thresholding systems
with switching to a two-provider collective in which
providers y1 and y2 accept a maximum of k1 ¼ 100 and
k2 ¼ 20 concurrent sessions, respectively. Provider y1
receives a fixed intensity of �1 ¼ 20. Provider y1 adjusts
its threshold h1 to the maximum integer value (via (8)) such
that the rejection rate for provider y1

0s content remains
below the value of l1 ¼ 10�5. In this case, provider y1
relaxes its condition for willingness to participate in the
collective and requires only that its content’s rejection rate
remains below l1. Provider y2 enables its server to fully
share its resources, i.e., h2 ¼ k2 ¼ 20.

In Fig. 10a, we vary �2 in the x-axis and plot the largest
value of h1 along the y-axis as a function that maintains
p2;1 < l1. We see that, for �2 � 60, the threshold remains at
100. As �2 crosses 60, the threshold drops rapidly, then
continues to reduce, but at a much slower rate. In Fig. 10b,
we vary �2 along the x-axis and the rejection rate along the
y-axis. Fig. 10b shows rejection rates of various configura-
tions as a function of �2. The left-most curve plots the
rejection rate of provider y2

0s content when y2 operates in
isolation (obtained from (1)). The remaining three curves
(which differ only when �2 > 60) plot, from top to bottom,
the rejection rate of provider y2

0s content when participating
in the collective with optimal thresholding, the rejection rate
for all commodities when participating in the collective
without thresholding (obtained from (2)), and the rejection
rate of provider y1

0s content when participating in the
collective with the optimal thresholding.

The bottom curve verifies that, with thresholding,
rejection rates of provider y1

0s content remain below
l1 ¼ 10�5. By comparing the remaining two curves from
the collective to the curve for the case where y2 is in
isolation, we see that, even with thresholding, participating
in the collective significantly reduces provider y2

0s rejection
rate. We see that, while thresholding increases the rejection
rate for provider y2

0s content in comparison to a threshold-
free collective, provider y1 is willing to participate in the
collective only when the thresholding is applied, and
provider y2 experiences a rejection rate that is orders of
magnitude smaller than if y2 operates in isolation. Such

adjustments permit a provider to set a target rejection rate
to not be exceeded.

7 CONCLUSION

We have analyzed the performance of resource sharing via
the formation of server collectives as a means to reduce
rejection rates in content distribution services. Providers can
benefit by participating in collectives but should avoid
situations in which their resources are overused servicing
requests on the behalf of other collectives members,
worsening the delivery quality of their own content. Our
analysis and simulation via fundamental queuing models
yields the following results and insights:

. We modeled fixed and elastic rate transfers within
collectives and compared the rejection rates and
completion times of these transfers to the case where
providers operate in isolation. We then used our
models to determine the conditions under which a
provider benefits from participating in collectives. In
particular, we determine the conditions for which all
participants simultaneously benefit from their parti-
cipation in collectives.

. Even a small degree of heterogeneity among
participants in a collective can lead to situations in
which one or more providers achieve a lower
rejection rate for their content by operating in
isolation. An expected consequence is that such
providers would refrain from participating in
collectives in these unfavorable circumstances.

. In some circumstances, we observe significant
reduction in rejection rates of collectives in compar-
ison to systems in isolation. For instance, we show a
four-order-of-magnitude reduction in rejection rates
when comparing an isolated system to a two-server
collective. Furthermore, a 10-server collective has a
seven-order-of-magnitude reduction in comparison
to an isolated system. As the number of servers
increases, the relative reduction of rejection rate
becomes less dramatic.

. We found asymptotic results as the number of
collective providers tends to 1. If the factor �=k
given by the average provider intensity � and the
maximum number of concurrent sessions in the
system k is less than one, then the system’s rejection
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Fig. 10. Optimal thresholding. (a) Threshold adjustment. (b) Rejection rates.



rate is 0 in the limit. Otherwise, the rejection rate
converges to 1� k=�.

. When demands on providers’ contents are high,
composing a collective (without thresholding) can
reduce the rejection rate of all participants for a
greater variation in intensities among participating
systems supporting fixed-rate transfers than can be
tolerated within systems supporting elastic-rate
transfers.

. We analyzed three thresholding techniques that
enable heterogeneous sets of server systems (differ-
ent intensities and numbers of slots) to form a
collective in which requests for all participants’
commodities are dropped at a rate lower than when
the systems operate in isolation. We show that, in
conjunction with thresholding, the ability to dyna-
mically swap a transmission to the server that profits
directly from the servicing of the content has little
impact on the rejection rate. Thresholding therefore
encourages providers to participate in collectives
who otherwise would not do so, extending the range
of heterogeneity in providers for which server
collectives are applicable.
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