
The Age of Impatience:
Optimal Replication Schemes for Opportunistic Networks

Joshua Reich♯, Augustin Chaintreau♭

♯Department of Computer Science, Columbia U., NY, email: reich@columbia.edu
♭Thomson, Paris, email: augustin.chaintreau@thomson.net

Thomson Technical Report
Number: CR-PRL-2009-06-0001

Date: June 30th 2009

Abstract: We study mobile P2P content dissemination schemes
which leverage the local dedicated caches provided by hand-held de-
vices (e.g., smart-phones, PDAs) and opportunistic contacts between
these devices. In such a distributed environment, each opportunistic
contact represents a current opportunity to selectively replicate local
cache content to fulfill future demand. The efficiency of current repli-
cation decisions, though, depends on both the arrival of new demand,
as well as users’s impatience (i.e., as time passes without fulfillment,
the demanding peer loses interest with increasing probability). Con-
sequently, we measure the efficiency of a replication scheme based
on how well its replication decisions enable the timely fulfillment of
demand. Moreover, in many scenarios this must be achieved solely
through use of locally available information.
Our work makes several important contributions: (1) We are the first
to consider the impact of users’s impatience on optimal content dis-
semination schemes; we characterize the optimal allocation using a
generic impatience function and show it to be efficiently computable.
In some cases, this optimal allocation can be known in closed form.
(2) Furthermore, we develop a reactive distributed algorithm, Query
Counting Replication (QCR) that produces the optimal allocation for
any impatience function, based on local information and no knowl-
edge of users’s demands. We discover that when QCR is implemented
naively in the opportunistic context, pathological instability of the
global cache allocation will result. In response, we provide a novel
mechanism, Mandate Routing, that resolves these pathologies. (3)
Finally, we validate these techniques on real-world contact traces,
demonstrating the robustness of our results in the face of heteroge-
neous meeting rates and bursty contacts.

1. INTRODUCTION
As smartphones capable of displaying, storing, and

transmitting media content continue to proliferate, the
problem of how to distribute content becomes ever more
timely. A common approach to content dissemination
leverages a centralized model in which content providers
send content directly to users through infrastructure. In
fact, that is how practically all existing mobile content
dissemination systems operate today. However, this ap-
proach is both expensive for the content provider and
inefficient from a networking perspective as it leaves
unused the potentially very large quantity of bandwidth
available for content exchange between smartphones within
transmission range of their short range radios (e.g., Blue-
tooth, 802.11). Consequently, in this work we explore
opportunistic protocols for content dissemination that
selectively replicate local cache content when peers meet
- in order to efficiently fulfill demand, while harnessing
the full power of the mobile network.

To model this problem, we consider a set of mobile
nodes carried by users, each equipped with a finite ded-
icated cache. The contents of such a dedicated cache
can be used to fulfill the requests of other peers when
the opportunity arises. The challenge is to allocate the
caches of all peers (equivalently, manage the distributed
global cache) so as to maximize the expected efficiency
of the system.

However, in contrast with traditional Peer-to-Peer
(P2P) networks, the time elapsed between demand ar-
rival and its fulfillment is far from negligible. Conse-
quently, it is possible that users may exhibit impatience
- as time passes without a user’s demand being fulfilled,
there is an increasingly greater likelihood that the user
will become impatient and lose interest or even become
angry. Our work is the first to consider the impact of
user impatience on the efficiency of a content dissem-
ination strategy. We do so by incorporating a generic
impatience function, whose only constraint is that it is
monotone non-increasing, into the network’s objective
measure.

While our analytic aim is to describe the optimal al-
location of the distributed global cache (i.e., the alloca-
tion that maximizes the efficiency of demand fulfillment
in face of user impatience), we are also concerned with
developing mechanisms capable of achieving or approx-
imating such allocations. The same factors that form
the basis for our allocation problem (unpredictable mo-
bility and resultant sporadic contacts) also imply that
it may be difficult to gather global knowledge of the
network’s state. Consequently, we seek to develop dis-
tributed mechanisms capable of producing optimal or
approximately optimal allocations using as little knowl-
edge as possible.

Moreover, unpredictable peer contacts also impact
the deployment of such distributed reactive mechanisms.

In the opportunistic context, we find that when we
naively deploy a distributed mechanism that replicates
cache items in response to demand and fulfillment events,
the network’s unpredictable contact structure causes
some pieces of content to be favored over others. Thus
a mechanism that approaches the correct allocation in
more traditional peer-to-peer (P2P) settings becomes
pathological in the opportunistic context. Along with
discovering this phenomenon, we also develop a tech-
nique for resolving it, that is lightweight and easy to
implement.

In this paper, we make the following contributions:

1. We are the first work to consider the impact of im-
patience on optimal content dissemination schemes.
We propose a general model to capture this impact
and show that under very general assumptions on
the impatience function (namely, that is is mono-
tone) one can define an optimal cache allocation
(Section 3). Furthermore, we demonstrate that
this optimal is unique and can be computed ef-
ficiently in a centralized manner. We prove that
is may vary, depending on the users’s impatience
function, between a uniform and a highly skewed
allocation. Under the simplified assumption of ho-
mogeneous meeting rates, we show that the cor-
responding optimal cache allocation is known in
closed form for a general class of impatience util-
ity (Section 4).

2. Inspired by these results, we study the behavior of
distributed cache algorithms, that do not know the
popularity of content items or the current cache al-
location. We propose a reactive algorithm, Query
Counting Replication (QCR), which generalizes pro-
tocols found in previous work. We prove that,
if we only assume that the impatience function
and the contact rate is known, QCR can be tuned
to approach the optimal allocation at equilibrium.
We also discover that when QCR is implemented
naively in the opportunistic context, pathological
instability of the global cache allocation will result.
In response, we provide a novel mechanism, Man-
date Routing (MR), that resolves these pathologies
and may have applicability to other opportunistic
mechanisms (Section 5).

3. Finally, we validate these techniques on real-world
contact traces, demonstrating the robustness of
our analytic results (obtained under the simplified
assumption of homogeneity) in the face of hetero-
geneous meeting rates and bursty contacts (Sec-
tion 6).

These results demonstrate that users’s impatience im-
pacts the performance of P2P mobile opportunistic sys-
tem, both from a theoretical standpoint (optimality) as
well as for practical choices (replication protocols).

2

For clarity, we do not include the proof of the ana-
lytical result in the main body of the text, they can be
found in Appendix A.

2. RELATED WORK
Networks that leverage local connection opportuni-

ties to communicate in a delay tolerant manner can be
classified into two categories. The first category, fea-
turing networks such as DieselNet[1] or KioskNet[15],
involves nodes with scheduled or controlled routes, and
routing protocols designed to communicate critical in-
formation with predictable latency. The second cate-
gory contains network featuring unpredictable mobility
[9, 5] that may be used in an opportunistic manner.
In this case, it is infeasible to provide strict guarantees
on message delivery time. However, the performance
of many P2P applications may still benefit greatly from
opportunistic contacts between the nodes. It is into this
second category that the content dissemination problem
we investigate here falls. Motivated by the need to un-
derstand the capability of such networks, we measure
how such opportunistic systems can disseminate con-
tent while coping with user impatience.

Content dissemination through opportunistic contacts
was first proposed in the 7DS peer-to-peer architec-
ture[14]. PodNet [11] is another opportunistic system
that focuses on the dissemination of podcasts, or series
of content items on a channel. Publish/subscribe ap-
plications over opportunistic networks recently became
an active research area. The performance of some of
these systems have been analyzed from a hit-rate or
delay standpoint [12, 10] for a persistent demand. Ad-
vanced cache management protocols proposed to repli-
cate content using either filtering schemes [8], heuris-
tic utility values based on prediction of user future de-
mands [16] and/or graphs that leverage social relation-
ships between mobile users [2, 18, 7]. The performance
of these schemes are difficult to analyze due to their
complexity.

Our work departs from previous formulations in that
we account for the effect of user impatience. In other
words, instead of using (local) utility as an intermedi-
ate quantity used to estimate one or several parame-
ters informing protocols, we take (global) utility as an
end-measure for network efficiency (i.e., the system’s
performance as it is perceived by users in aggregate).
This approach permits to precisely define the optimal
cache allocation, and show for the first time that simple
reactive protocols may approach this optimal.

Replication protocols were first introduced for un-
structured peer-to-peer systems deployed on wired net-
works, as a way to increase data availability and hence
to limit search traffic [6, 17]. Assuming that nodes
search for files in random peers, it was shown [6] that
for each fulfilled request, creating replicas in the set

of nodes used for the search (i.e., path replication)
achieves a square root allocation: a file i requested with
probability pi has a number of replicas proportional to√
pi at equilibrium. This allocation was shown to lead

to an optimal number of messages overall exchanged
in the system. Assuming that nodes use an expanding
ring search, an allocation where each file is replicated in
proportion of its probability pi was shown to be optimal
[17]. The meeting between unpredictable mobile nodes
can in some sense be compared to a random search,
however, we are not aware of any work who studied an-
alytically the performance of replication algorithms in
this context.

Our results indicate that similar replication techniques
can be used for a peer-to-peer system deployed on top of
opportunistic contacts between mobile devices. Indeed
we even show that replication can be tuned to approach
the optimal utility. However, our results also prove that
this should be done wisely. Firstly, because the impa-
tience of users (which arise because search delay are
not negligible) greatly impacts which replication strat-
egy is the best choice. Secondly, because if replication
actions are unevenly delayed the system may fail to con-
verge to the correct allocation, if at all. Consequently
mechanisms are needed to ensure all replication delays
occur evenly. These new findings complement previous
work and may be used as a stepping stone to design the
performance of replication algorithm in more general
network with heterogeneous meeting rates.

3. EFFICIENCY OF P2P CACHING
In this section, we describe a model for a mobile P2P

caching system with impatient users. Nodes are occa-
sionally connected as they come within wireless range;
Some of them, possibly all, are able to store items to
serve others when possible. The main result of this sec-
tion is that the efficiency of this system as a whole can
be measured in an objective function that allows a gen-
eral model of user impatience.

Clients and Server nodes.
Each node in the P2P system may be a client, a

server, or both. The set of client nodes is denoted by C,
we generally denote its size by N . Each client demands
and consumes content as described in Section 3.1. The
set of all server nodes is denoted by S. Servers cache
content in order to make it available to interested clients
(when such clients are met). Note that the same node
can be both a client and a server, (i.e., it maintains a
dedicated local cache for serving other nodes’ requests).

Our model includes in particular the two following
scenarios of interest

Dedicated nodes server and client populations are sep-
arate (i.e., C ∩ S = ∅).

3

Pure P2P all nodes are server and client (i.e., C = S).

The dedicated nodes case resembles a managed P2P
system, where delivery of content is assisted by special
type of nodes (e.g., buses or throwboxes[1], kiosks[15]).
The pure P2P case denotes a cooperative setting where
all nodes (e.g., users’s cell-phones[14, 11]) request con-
tent as well as help deliver data to others.

3.1 Client demand and Impatience
We implicitly assume that the efficiency of a P2P

cache is going to be affected primarily by user behaviors.
There are two important aspects to consider: firstly,
which content is accessed with which frequency, and
secondly, how users react to delays experienced while
searching for this content.

We denote by I the set of items that can be requested
by users in the system, they are indexed by i.

Demand, Popularity.
Demand for content items are created by clients in

the form of requests. As in previous work, we assume
that the process of demand for different items follow
different rates, reflecting differing content popularity.
We denote by di the total rate of demand for item i. The
probability πi,n reflects the relative likeliness of demand
arising at node n, where

∑

n∈C πi,n = 1. In other words,
node n creates a new request for item i with a rate
equal to diπi,n. One can generally assume that different
populations of nodes have different popularity profile,
generally captured in the values of πi,n. Otherwise, we
can assume to simplify that items, especially the ones
with the highest demand, are popular equally among
all network nodes. This corresponds to the case where
πi,n = 1/|C|.

Without loss of generality we assume that items are
sorted according to demand in decreasing order (i.e., di ≥
dj for i ≤ j). Examples of demand distributions are

Pareto with parameter ω > 0: di ∝ i−ω for all i ∈ I.

Uniform di = d for all i ∈ I (this is a special case of
the above where ω = 0).

The uniform demand case is unsuprisingly quite simple
to deal with, as all items should receive an equal rate
of the cache. In the rest of this paper, we will assume
any arbitrary values of di. In simulation we will use a
Pareto popularity distribution, generally considered as
representative of content popularity.

Impatience function.
In contrast with previous work in P2P networks, P2P

content dissemination over an opportunistic mobile net-
work induces a non-negligible delay between the time a
request is made by a client node and the time that it is
fulfilled. This delay depends on the current cache allo-
cation, as the request is fulfilled the next time the node

has an opportunistic contact with a server possessing
a replica of this item. Its main consequence is that it
is important to account for the behavior of users with
regard to this delay, or equivalently for users’s impa-
tience: by the time an item is received by a client, it
may very well happen that this item is not relevant to
that client any more (or even worse, tardy fulfillment
has made that client actively angry).

Since users may follow several possible behaviors in
different scenarios, we want a simple yet flexible model
to account for their impatience. This is why we intro-
duce for each item i a general impatience function hi:
the value hi(t) denotes the gain for the network result-
ing from delayed fulfillment of demand when the request
was fulfilled t time units after it was created. Note that
this value can be negative, which denotes that this de-
layed fulfillment generates a disutility, or a cost for the
network. Since it is always preferable to fulfill demand
as soon as possible, we can generally assume that hi is
a non-increasing function of time. In the rest of this
paper, we derive results applying to any arbitrary non-
increasing impatience function hi.

We now present several examples of impatience func-
tions corresponding to different perceptions of the per-
formance of a P2P caching system by the users.

One example of impatience function can be seen as an
advertising revenue. Assume content items are videos
starting with a commercial, and that the network provider
receives a constant unit revenue each time a commercial
is watched by a user. In this case, the impatience func-
tion simply denotes the probability that a user watches
a given video when he/she receives the content t time
after it was requested. Two examples of functions mod-
eling this situation are:

Step function h(s)
τ : t 7→ I{t≤τ}.

Exponential function h(e)
ν : t 7→ exp (−νt).

The former models a case where all users stop being
interested to see the item after waiting for the same
amount of time. In the second case, the population of
users is more mixed: at any time, a given fraction of
users is susceptible to lose interest for this content.

Another example of impatience function corresponds
to critical time information, like information about an
emergency, or advertisement for a few highly demanded
and rare goods (well located apartments) that are likely
to be sold very quickly. In this case, the impatience
function presents a large reward for a prompt demand
fulfillment. One example of functions reflecting this are:

Inverse power h(p)
α : t 7→ t1−α

α− 1
. with α > 1

As a third example, similar to a waiting cost, one can
consider an impatience function that grows increasingly
more negative with time. This corresponds to the fact

4

that users get increasingly upset because of tardy fulfill-
ment. Two possible choices of the impatience function
for this case are

Negative Logarithm h
(p)
1 : t 7→ − ln(t).

Negative power h(p)
α as above with α < 1

We plot on Figure 1 illustration of impatience func-
tions for the three cases presented above.

To simplify the presentation below, we consider first
the case where h admits a finite limit at time t = 0,
(i.e., h(0+) < ∞). This applies to all cases above ex-
cept for the inverse power and the negative logarithm
function. These functions can be considered as well,
but they pose some particular technical challenges due
to the singularity of the function in t = 0. In Ap-
pendix A.4, we prove that all the results of this paper
hold for these functions as well, as long as α ≤ 2, in the
dedicated node case.

3.2 Caches and Mobility

Content of server cache.
The main variable of interest in the system is the

content of the cache in all server nodes. For any item
i and m in S, we define xi,m to be one if server node
m possesses a copy of item i, and zero otherwise. The
matrix x = (xi,m)i∈I,m∈S represents the state of the
global distributed cache.

We denote the total number of replicas of item i
present in the system by xi =

∑

m∈S xi,m.
In the rest of this paper, we assume that all servers

have the same cache size of ρ identically sized content
items. This is not a critical assumption and most of the
following results can be extended to caches of differing
sizes. From this assumption we deduce that a content
allocation x in server nodes is feasible if and only if:

∀m ∈ S ,
∑

i∈I

xi,m ≤ ρ .

Mobility.
As nodes move in a given area, they occasionally meet

other nodes - these meetings provide the opportunity for
replication of cache content and fulfillment of outstand-
ing requests. For simplicity and as a way to compare
different P2P caching schemes, we focus on a simple
case where contacts between clients and server nodes
follow independent and memory less processes. In other
words, we neglect the time dependence and correlation
between meeting times of different pairs which may arise
due to complex properties of mobility. Our model can
be more generally defined for any contact processes, as
will be done in Section 6 for comparison. The mem-
oryless assumption helps us to understand what are
optimal strategies in a simple case before evaluating

them using real traces for a complete validation of these
trends. We consider two contact models:

Discrete time The system evolves in a synchronous
manner, in a sequence of time slots with duration
δ. For each time slot, we assume node contacts
occur independently with probability µm,n · δ.

Continuous time The system evolves in an asynchronous
manner, so that events may occur in continuous
time. We assume that node contacts occur ac-
cording to a Poisson Process with rate µm,n.

Note that when δ is small compared to any other time
in the system, the discrete time model approaches the
continuous time model. In this paper, we later focus
on the analysis of the continuous time case, all our re-
sults apply to the discrete time case as well. Whenever
space permits we will write results in both cases. Sim-
ulations results, which are based on discrete event pro-
cesses, confirm the good match between our continuous
time analysis and the discrete time dynamics of a real
system (see Sec. 6).

The system is said to follow homogeneous contacts if
we have µm,n = µ for all nodes m and n. This case
corresponds to a population of nodes with similar char-
acteristics where all meeting are equally likely, as for
instance it may be between the participants of a spe-
cial event. Under the assumption of homogeneous con-
tacts, we show later that the target optimal allocation
and the behavior of distributed algorithm can be pre-
cisely understood. Simulation confirm that the trends
we identify precisely in this simple case generalize to
heterogeneous population.

3.3 Content allocation objective
Demand arises in this P2P system according to con-

tent popularity, and is served as a function of mobil-
ity and content availability in caches, captured through
variables x = (xi,m)i∈I,m∈S .

We define Ui,n(x) to be the expected gain generated
by a request for item i created by client node n. Follow-
ing our model of users’s impatience, this expected gain
is equal to E [hi(Y)] where Y denotes the time needed
to fulfill this request, which itself critically depends on
the availability of item i in servers’s caches.

The total utility perceived by all clients in the system,
also called social welfare, may then be expressed in the
following way:

U(x) =
∑

i∈I

di

∑

n∈C

πi,nUi,n(x) . (1)

A good allocation of content to cache a choice of x that
results in a high social welfare. Note that this objective
combines the effect of delay on gain perceived by users,
the popularity of files, as well as the cache allocation.

5

h
(e)
ν , ν = 1

h
(e)
ν , ν = 0.1
h

(s)
τ , τ = 1

t

h
(t

)

543210

2

1

0

-1

-2

-3

h
(p)
α , α = 1

h
(p)
α , α = 1.5
h

(p)
α , α = 2

t

h
(t

)

543210

2

1

0

-1

-2

-3

h
(p)
α , α = −1
h

(p)
α , α = 0

h
(p)
α , α = 0.5

t

h
(t

)

543210

1

0

-1

-2

-3

-4

-5

Figure 1: Different impatience functions

In the remaining of this section, we derive an expres-
sion for Ui,n(x), based on the differential impatience
function, which will be instrumental in deriving some
of its properties.

Differential impatience function.
We denote this function by ci for the continuous time

contact model (resp. ∆ci for the discrete time contact
model). These functions are defined by

ci(t) = −dhi

dt
(t) , and ∆ci(kδ) = hi(kδ)−hi ((k + 1) δ) .

The values of ci(t) and ∆ci(kδ) are always positive as
hi is a non-increasing function. The value of ci (resp.
∆ci) represents the additional loss of utility, which is
incurred per additional unit of time spend waiting (resp.
the loss of utility incurred for waiting another time slot).

We present in the second line of Table 1 the expres-
sion for ci for all the impatience functions introduced
above. Note that when hi is not derivable (like for the
step function), it may happen that ci is not defined as
a function but as the derivative measure in the sense of
the distribution.

General expression forUi,n(x).
Following a slight abuse of notation, we set by conven-

tion xi,n = 0 when n is not a server node (i.e., n /∈ S).
With this notation, we find the following expressions
for Ui,n. the proof relies on memory less property of
contacts and may be found in Appendix A.1.

Lemma 1. In the discrete time contact model, Ui,n(x)

is hi(δ)−(1−xi,n)
∑

k≥1

∏

m∈S

(1 − xi,mµm,nδ)
k
ci(k ·δ) ,

For the continuous time contact model, Ui,n(x) is

hi(0
+)− (1−xi,n)

∫ ∞

0

exp

(

−t
∑

m∈S

xi,mµm,n

)

ci(t)dt .

Homogeneous contact case.
If we assume homogeneous node contacts (i.e., when

µm,n = µ), the general expressions above lead to sim-
pler closed form expressions (see Appendix A.1 for exact
arguments). In particular, the gain or utility depends
on (xi,n)i∈I,n∈S only via the number of copies present
in the system for each item (xi)i∈I .

First, in the dedicated node case (i.e., S ∩C = ∅), we
have, respectively for the discrete time contact model
and the continuous time contact model:

U(x) =
∑

i∈I

di



h(δ) −
∑

k≥1

(1 − µδ)xik ci(k · δ)



 . (2)

U(x) =
∑

i∈I

di

(

h(0+) −
∫ ∞

0

e−tµxici(t)dt

)

. (3)

Similarly, for the pure P2P case, if we further assume
that all N = |C| = |S| nodes follow the same item
popularity profile (i.e., πi,n = 1/N), we have for the
two different models of contact process:

U(x) =
∑

i∈I

di



h(δ) −
(

1 − xi

N

)

∑

k≥1

(1 − µδ)
xik ci(k · δ)



 .

(4)

U(x) =
∑

i∈I

di

(

h(0+) −
(

1 − xi

N

)

∫ ∞

0

e−tµxici(t)dt

)

.

(5)

4. OPTIMAL CACHE ALLOCATION
The social welfare defined in the previous section of-

fers a measure of the efficiency of cache allocation which
captures users’s requests and impatience behavior. In
this section we wish to solve the following social welfare
optimization:

max

{

U(x)

∣

∣

∣

∣

∣

xi,n ∈ {0, 1} , ∀n ∈ S,
∑

i∈I

xi,n ≤ ρ

}

.

(6)

6

4.1 Submodularity, Centralized computation
A function f that maps subset of S to a real num-

ber is said sub-modular if it satisfies the following “di-
minishing returns” property: ∀A ⊆ B ⊆ S , ∀m ∈ S ,
f(A ∪ {m})− f(A) ≥ f(B ∪ {m})− f(B) .

The function Ui,n(x) can be interpreted as a func-
tion that maps subset of S (i.e., the subset of servers
that possess a replica for item i) to a real number (the
expected value of a request for item i created in client
n). Similarly, U may be seen as a function that maps
subset in S × I (subsets denoting which servers possess
which replica), to a real value (the social welfare).

Theorem 1. For any item i and node n, Ui,n is sub-
modular. As a consequence U is submodular.

Note that this result applies to any mixed client/server
population of nodes, heterogeneous contact processes,
and any arbitrary popularity profile. The proof (see
Appendix A.2) is a consequence of the general expres-
sion for Ui,n found in the previous subsection.

One can take in general advantage of submodular-
ity to show that a greedy procedure builds a (1− 1/e)-
approximation of the maximum social welfare under ca-
pacity constraints (see [13]). Such an algorithm is used
in Section 6 to find a cache allocation for heterogeneous
contact traces.

In the case of homogeneous contact rates, we can ob-
tain an even stronger results, as the social welfare only
depends on the amount of replicas for each item, and
not on the actual subset of nodes that possess it. We
have (see Appendix A.2 for the proof).

Theorem 2. In the homogeneous contact case, U(x)
is a concave function of { xi | i ∈ I }.

The optimal values of { xi ∈ {0, 1, · · · , |S|} | i ∈ I }
are found by a greedy algorithm that uses at most O(|I|+
ρ|S| ln(|I|)) computation steps.

Moreover, the solution of the relaxed social welfare
maximization (i.e., maximum value of U(x) when (xi)i∈I

are allowed to take real value) can be found by gradient
descent algorithm.

4.2 Characterizing the optimal allocation
In the homogeneous contact case, whenever xi only

takes integer values, it can be difficult to grasp a simple
expression for the allocation maximizing social welfare,
as it is subject to boundary and rounding effect. How-
ever, when the number of servers is large, xi may take
larger values, in particular for popular items. Hence,
the difference between the optimal allocation and the
solution of the relaxed optimization (where (xi)i∈I may
take real values, as defined in Theorem 2) tends to be-
come small. The latter is then a good approximation
of the former. In addition, when the number of clients
N becomes large, the difference between the dedicated

node case and the pure P2P case tends to become negli-
gible, as the correcting terms (1− xi

N) in Eq.(4) and (5)
approaches 1.

We show in this section that the solution of the re-
laxed optimization problem satisfies a simple equilib-
rium conditions. Although we only derive this condi-
tion in the continuous time contact model, a similar
condition can be found in the discrete case model.

Theorem 3. We consider the continuous time con-
tact and dedicated node case. Let x̃ be the solution of
the relaxed social welfare maximization (as defined in
Theorem 2). We have

∀i, j , x̃i = |S| or x̃j = |S| or di · ϕ(x̃i) = dj · ϕ(x̃j) .

where we define ϕ as ϕ : x 7→
∫ ∞

0

µte−µtxc(t)dt .

The proof (see Appendix A.3) relies on the observa-
tion that, if the condition is not satisfied then it is pos-
sible to modify x̃ to remain in the capacity constraint
and obtain an even larger social welfare.

As a consequence, if all items exhibit the same power

impatience function (hi = h
(p)
α), the condition implies,

for all item i that are within the boundary conditions
(i.e., xi < |S|), that (x̃i)

2−αdi is a constant independent
of i. We deduce that the optimal solution of this relaxed

problem resembles the distribution where xi ∝ d
1

2−α

i .

x̃i ∝
√
di

x̃i ∝ di

x̃i ∝ d2
i

α

1
2−α

210-1-2

4

3

2

1

0

Figure 2: Coefficient of the optimal allocation
for different power impatience functions.

5. DISTRIBUTED OPTIMAL SCHEMES
The previous section establishes that the cache al-

location problem admits an optimal operating point,
which may in some cases be known in closed form, and
can always be computed in a centralized manner. When
a highly available control channel is available, using
such a centralized approach is feasible. However, in the
absence of such a control channel, this approach might
only be replicated noisily through the use of distributed
estimators at each server node.

In this section, we demonstrate that one does not
need to maintain global information, or know the de-
mand of items a priori, to approach an optimal cache

7

allocation. We demonstrate that simple reactive proto-
cols, generalizing replication techniques introduced in
the P2P literature, are able to approach the optimal
allocation using only local information. Interestingly,
these results provide both a method that improves per-
formance of P2P caching systems and can be deployed
easily, but also explain why sometimes very simple repli-
cation strategies can perform quite well.

In order to build such low-overhead reactive protocol
for the opportunistic setting, two particular challenges
need be overcome:

• We must understand how to construct a replica-
tion strategy that reacts naturally to the demand
for and availability of content (Section 5.1), while
also properly adapting our replication strategy to
impatience of users (Section 5.2). A successful
strategy will allow us to approach the optimal ef-
ficiency when the system reaches equilibrium.

• We must ensure that the replication technique is
implemented in such a way that ensures the con-
vergence towards the equilibrium. This challenge
proves to be non-trivial in the opportunistic con-
text for the strategies we examine (Section 5.3).

5.1 Query Counting Replication
Distributed techniques for achieving optimal alloca-

tions are beneficial because they move the burden of
data and message exchange off the centralized infras-
tructure and onto the nodes themselves. This can re-
sult in significant reduction of cost for provisioning ser-
vice. Moreover this can make such provisioning possible
where infrastructure isn’t available.

We propose a general class of distributed schemes,
that we call Query Counting Replication (QCR). QCR
implicitly adapts to the current allocation of data and
collection of requests, without storing or sharing explicit
estimators. QCR achieves this by keeping a query count
for each new request made by the node. Whenever a
request is fulfilled for a particular item, the final value
of the query counter is used to regulate the number of
new replicas made of that item. The function ψ that
maps the value of the query counter to the amount of
replicas produced is called the reaction function. We
describe in Section 5.2 precisely how it should be set,
given knowledge of user impatience.

As an example, Node a begins requesting a copy of
item i. Each time node a subsequently meets a node,
node a queries the node met for a copy of item i and
increments the query counter associated with i. If af-
ter nine meetings a finally meets a node possessing a
copy of item i, the request is fulfilled and, according to
the above rule, a will create ψ(9) replicas of this item
and transmit them proactively to other nodes met when
the opportunity arise. This principles generalizes path
replication [6] where ψ(y) was a linear function of y.

5.2 Tuning replication for optimal allocation
We now describe how to choose the reaction func-

tion ψ depending on users’s impatience. We first ob-
serve that the expected value of the query counter for
different item i is proportional to 1/xi, since when-
ever a node is met there is roughly a probability xi/|S|
that it contains item i in its cache. Hence, we can as-
sume as a first order approximation that approximately
ψ(|S|/xi) replicas are made for each request of that
items. Inversely, as a consequence of random replace-
ment in cache, each new replicas being produced for
any items erases a replica for item i with probability
xi/(ρ|S|). As a consequence, the number of copies for
each item follows the system of differential equations:

∀i ∈ I ,
dxi

dt
= di · ψ(

|S|
xi

) − xi

ρ|S| ·
∑

j∈I

djψ(
|S|
xj

) . (7)

Assuming the system converges to a stable steady
state, the creation of copies should compensate exactly
for their deletion by replacement. In other words a sta-
ble solution of this equation satisfies

∀i ∈ I , di
1

xi
· ψ(

|S|
xi

) =
1

ρ|S| ·
∑

j∈I

djψ(
|S|
xj

) .

Note that the RHS is a constant that does not depend
on i anymore, so that this implies

∀i, j ∈ I , di
1

xi
· ψ(

|S|
xi

) = dj
1

xj
· ψ(

|S|
xj

) .

In other words, the steady state of this algorithm satis-
fies the equilibrium condition of Theorem 3 if and only

if we have: ∀x > 0 , 1
xψ(|S|

x) = ϕ(x) where ϕ is defined
as in Theorem 3. Equivalently,

∀y > 0 , ψ(y) =
|S|
y
ϕ(

|S|
y

) .

Theorem 4. The steady state of QCR satisfies the
equilibrium condition of Theorem 3 if and only if

ψ(y) ∝ |S|/y
∫ ∞

0

µte−µ t|S|
y c(t)dt .

Table 1 summarizes the values of the different func-
tions, in particular the optimal reaction function to use,
for the different models of impatience introduced before.
This table was computed for the continuous time and
dedicated node case. A similar table can be found for
the pure P2P case, it can be found in Appendix A.5
together with how to derive its exact expression. It
is approximately equivalent to this one whenever N is
large.

5.3 Mandate routing
Up to this point we have worked under the assump-

tion that copies can be made more or less immediately,

8

Model Step function Exponential decay Inv. Power Neg. Power Neg. logarithm
(α < 1) (1 < α < 2) (α = 1)

Impatience h(t) I{t≤τ} exp (−νt) t1−α

α− 1
− ln(t).

Diff. Impat. c Dirac at t = τ density t 7→ ν exp (−νt) density t 7→ t−α

Gain U(x)
∑

i di(1 − e−µτxi)
∑

i di(1 − 1
1+ µ

ν
xi

)
∑

i dix
α−1
i

µα−1Γ(2−α)
α−1

∑

i di ln(xi) − cst

Cond. ϕ (Thm 3) di · µτe−µτxi di · µ
ν

(

1 + µ
ν xi

)−2
di · xα−2

i µα−1Γ(2 − α)

Reaction ψ (Thm 4) (µτ |S|/y) e−
µτ|S|

y

(

2 + ν
µ|S|y + µ|S|

ν
1
y

)−1

y1−α
(

µα−1|S|α−1Γ (2 − α)
)

Opt. allocation x̃i no closed form no closed form xi ∝ d
1

2−α

i .

Table 1: Several usual impatience functions and associated equilibrium and reaction functions.

as in classical wired P2P networks. However, in an op-
portunistic context this is far from true. Particularly:

• Copies can only be made when another node is
met, which happens only sporadically. Creating a
replica may also takes additional time as the node
met may already have a replica of that message.

• Since cache are replaced randomly, it could be
that, when a replica of the item needs to be pro-
duced, this item is no longer in the possession of
the node desiring to replicate it.

Mandates & Pathologies.
Because replicas cannot be simply generated imme-

diately, QCR mechanism deployed in an opportunistic
context must inherently make (either implicitly or ex-
plicitly) a set of instructions for future replication of
item i (i.e., instructions to be used later, when the pos-
sibility for execution arises). We call such an instruction
a replication mandate or mandate for short.

When a meeting occurs the mandate attempts to ex-
ecute itself, but as we have already discussed, the cir-
cumstances may often not allow for its execution. This
dependence of mandate execution on the state of the
distributed cache may throw a monkey wrench in the
dynamics outlined in Section 5.2 - for if the cache de-
viates to much from its expected state, the rates at
which a given replica population evolves may be higher
or lower than expected as well. As an example, if there
are many fewer than expected copies of item i in the
cache, and item i was erased by later random replace-
ment, item i may rarely be present again, so that man-
dates may not be executed soon in the future. An item i
that, in contrast, is more frequently found, will execute
its mandate more quickly and hence continue to domi-
nate. Consequently, if mandates are simply left at their
node of origin the allocation produced by any given run
of QCR can diverge significantly from the target allo-
cation, resulting in a loss of social welfare.

Our solution.
In order to address the above pathology, we need to

ensure that the number of replication actions taken for
each message is proportionally the same as the number
of mandates produced for that message. This could
be done in several ways, which all boil down to one of
the following two approaches: (1) Keep replicas near
mandates, or (2) Keep mandates near replicas.

The former approach (e.g., protecting items with cur-
rent mandates from being erased by random replace-
ment) violates the dynamics we are trying to protect
and introduces significant implementation-level complex-
ity - as we must now either replicate or protect against
deletion particular messages based on locally existing
mandates. While in practice these effects may be more
or less severe, the second option of keeping mandates
near replicas provides us with a way of solving the prob-
lem that involves no addition biasing of the overwrites,
nor requires any adjustment to the mechanism of cache
adjustment. Additionally mandates are by nature quite
small pieces of data, so moving them about introduces
little additional overhead in terms of communication
and storage.

The mandate routing scheme used for the experi-
ments shown in Section 6 is simple but can have sig-
nificant impact as will be seen later. We assume that
when two nodes meet, mandates are transfered with
preference to the nodes possessing copies of the mes-
sages to be replicated. This ensures that most of the
mandates that cannot be executed are soon transferred
to appropriate nodes. Otherwise mandates are simply
spread around - split evenly between the nodes. We
demonstrate empirically that this simple modifications
avoids divergence of QCR and is sufficient to converge
towards an optimal point.

6. VALIDATION
We now conduct an empirical study of different repli-

cations algorithms in a homogeneous contact setting, as
well as several traces in various mobility scenario. The
goal of this study is threefold: first, we wish to validate

9

empirically that the rationale behind our distributed
scheme do actually converge close to the optimal value
we predict, second, we wish to see quantitatively how it
improves over simple heuristics, and last, we prove that
the same scheme adapts well to contact heterogeneity
present in the traces, as well as complex time statistics
and dependencies between contacts.

6.1 Simulation settings
We have built a custom discrete-event, discrete-time

simulator in C++ which given any input contact trace
simulates demand arrival and the interactions of node
meetings.

Data plots present below are the average of 15 or
more trials with confidence interval corresponding to
5% and 95% percentiles. As said in Section 3.1 items
are requested following Pareto distribution, here with
parameter ω = 1. By default we assume ρ = 5 To keep
this section short, we present the most representative
results we found below, other values of ω and ρ can be
found in Appendix B.

Implementation of QCR.
When two nodes meet they first exchange meta data.

If either nodes have outstanding requests for messages
to be found in the other’s cache, then each of those re-
quests is fulfilled. For each fulfillment a gain is recorded
by the simulator. As in the model this value is based
on the age of this request and the impatience function.
Nodes maintain query counting counter and makes a
set of new mandates for each message fulfilled (as spec-
ified in Section 5.2). After fulfillment, the nodes then
execute and route all of their eligible mandates.

Each item i has one sticky replica which cannot be
erased. This implementation detail has the effect of
ensuring that we do not enter an absorbing state in
which certain messages have been lost through discrete
stochastic effects. We believe it is a reasonable assump-
tion for a fielded system, given that the initial seeder of
a content item will likely keep that item permanently.

Competitor Algorithms.
We compare the performance of QCR against some

with perfect control-channel information and the ability
to set the cache precisely and without restriction to their
desired allocation: OPT an approximation of the opti-
mal obtained by a greedy algorithm optimizing Pb.(6).
It is exactly optimal in the homogeneous case; UNI:
memory is evenly allocated amongst all items; SQRT:
memory allocation proportionally to the square root of
the demand; PROP: memory allocation proportional
to demand; DOM: all nodes contain the ρ most popu-
lar items.

6.2 Homogeneous contacts
We simulate a network of 50 nodes with 50 content

items, meeting according to a rate µ = 0.05. In this case
the absolute value of µ plays no role in the comparison
between different replication algorithm. As we wish to
validate our analysis, we focus on the pure p2p case,
which is the furthest from the analysis we conducted.
In particular we tune the reaction function ψ according
to Table 1 which has been derived from the dedicated
node case. We did do because we expect all correcting
terms to be small when N is not too small.

QCR with and without mandate routing.
Figure 3 illustrates the need to implement mandate

routing in query based replication. It was obtained
for the power impatience function with α = 0, and a
moderate cache size (5 items per node). This result is
representative of all comparison where mandate rout-
ing was turned on and off. As the time of the sim-
ulation evolves we see that the utility (as estimated in
expectation on (a), and observed from real fulfillment in
(b)) dramatically decreases with time when QCR does
not implement mandate routing. Further investigations
have shown that simultaneously the amount of mandate
diverges for item less frequently requested. We see on
(d), where the number of replicas is shown for the five
most requested items, that QCR without mandate rout-
ing systematically overestimates their share and some-
times. In contrast, the number of replicas with mandate
routing fluctuates around the targeted value, and QCR
quickly converges and stay near optimal utility.

Comparison with fixed allocations.
Figure 4 presents the utility obtained with different

algorithm including QCR. For any algorithm, we plot in
the y-axis (U − U opt)/|U opt | where U is the utility
obtained on average during the simulation by this algo-
rithm and U opt is the value obtained with the optimal
allocation. Hence it is always negative. Value y = −1
corrresponds to a utility 1% smaller than the optimal
social welfare. Due to large variation of this quantity
among parameters and algorithms, we used a logarith-
mic scale in the y-axis to present these results. For
each of the algorithms, we consider two models of im-
patience function (power impatience and step function)
with different parameters, varied along the x-axis.

We observe that extreme strategies (i.e., uniform and
dominated replication) fail to approach the optimal in
general. In particular it is the case for small value of
α, when users are sensitive to waiting delay and the de-
crease in social welfare can be high, and small value of τ
where quick response is essential. Demand aware offline
strategies (i.e., proportional and square-root) perform
similarly to QCR, although the latter does not require
any global information. We even observe that QCR

10

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
til

ity

Time (min)

DOM
UNI

OPT
QCRWOM

QCR

(a) Expected Utility

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
til

ity

Time (min)

DOM
UNI

OPT
QCRWOM

QCR

(b) Observed Util.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R

ep
lic

as

Time

msg 1
msg 2
msg 3
msg 4
msg 5

(c) Cache: Mandate Routing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R

ep
lic

as

Time

msg 1
msg 2
msg 3
msg 4
msg 5

(d) no Mandate Routing

Figure 3: Effect of Mandate Routing ρ = 5, I = 50, N = 50, ω = 1, α = 0

outperform proportional in many cases, sometimes very
significantly. Among all cases, QCR does not incur a
loss of utility beyond 5% (for step function) and 60%
in the worst case of power function. One unexpected
result is that the square root allocation is performing
reasonably well in most case studied, which indicates
that path replication may be a good replication algo-
rithm for general impatience function, however this is
an ideal performance observed when the allocation is
fixed with a priori knowledge. In contrast, propor-
tional allocation leads to much worse performance, in
particular for power impatience function. Proportional
allocation resembles a passive demand based replication
where a fixed number of replicas (e.g., one replica) are
created whenever a request is fulfilled (as found in [11]
and many other works). These results illustrate that
such passive replication simply gives too much weight
to popular items, and that compensating for this effect
is both needed and doable.

6.3 Real Contact Traces
We now consider contact as measured between mobile

nodes in two real scenarios.

Conference scenario.
We use the Infocom06 data set which measures Blue-

tooth sightings between 73 participants of the Infocom
conference (see [5] for more details) during 3 days. We
included in this simulation contacts among 50 partici-
pants (numbered from 21 to 71 in the original data sets)
that were selected as the one for which the measurement
period was the longest, as a way to remove bias from
poorly connected nodes.

Figure 5 (a) presents the utility as seen over time
(time averaged over an hour) for different allocation and
QCR (with mandate routing). We clearly observe the
alternation of daytime and nighttime during the trace.
For this case, the dominated and proportional alloca-
tion performs the best, QCR being very close to the
latter, in spite of heterogeneity and complex time statis-
tics. Square root and uniform performs poorly as the
delay requirement is too stringent to bring significant
improvement for non-popular items.

Figure 5 (b) and (c) presents the relative loss of util-
ity for different algorithms (over the optimal allocation,
as defined before) as a function of τ . We separate the
impact of heterogeneity per se by presenting the actual
traces and a synthetic trace where contact rates of all
pairs are identical but contacts are assumed to follow
memoryless time statistics. Heterogeneity per se does
not seem to impact much the performance of QCR, in-
deed it looks like QCR is even performing better, per-
haps because its implicit reaction to content availability
adapts well to heterogeneous cases. The most notable
difference with the homogeneous case is that the square
root allocation is not a clear winner anymore. Propor-
tional and dominated seems to improve their relative
performance. The results from actual traces show that
time statistics greatly impacts the performance of fixed
allocation. First, since the optimal was computed un-
der approximation of memory less contact, some algo-
rithm actually provides higher utility that this reference
benchmark. We also observe that the dominated alloca-
tion greatly improves due to bursty statistics. However,
the performance of QCR remains quite comparable, it
is generally within 15% of the optimal or approaches it
even more closely.

Vehicular networks.
We use contacts recorded between taxicabs gathered

from the Cabspotting project. The data sets was ex-
tracted from a day of data and assumed that taxicab
are in contacts whenever they are less than 200m apart
(see [4] for more details). Results, shown as relative
utility loss from optimal allocation, may be found in
Figure 6 (a) (b) (c). Again, we observe that the opti-
mal, which is based on a memoryless assumption, can
be outperformed by some allocation (as in (b) for the
step function case). Just like for the Infocom data set,
we see that square root tends to produce degraded per-
formance, while dominated allocation improves as het-
erogeneity and complex time statistics are included in
the contact trace. The performance of QCR, the only
schemes based on local information, appears less af-
fected by this change.

11

(a) Evolution of Utility (τ = 1)

0
-0.01

-0.1

-1

-5
-10

-50
-100
-200

-500
-1000

-2 -1.5 -1 -0.5 0 0.5 1

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (α) for power impatience Function

QCR
SQRT
PROP

UNI
DOM

(b) Power Impatience

0
-0.1

-1

-5

-10

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

(c) Step Function Impatience

Figure 4: Comparison of several algorithm (as loss of utility with regard to the optimal allocation)
for two impatience model

(a) Evolution of Utility (τ = 1)

0
2

5

-2
-5

-10

-50

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

(b) Actual Trace

0
-0.1

-1

-5

-10

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

(c) Synthesized Trace

Figure 5: Utility for Infocom06 Trace and step function model of impatience

7. CONCLUSION
Our results focus on a specific feature which makes

P2P caching in opportunistic network unique: users’s
impatience. From a theoretical standpoint, we have
shown that optimality is affected by impatience but can
be computed and moreover satisfies an equilibrium con-
dition. From a practical standpoint, we have seen that
it directly affects which replication algorithm should be
used by a P2P cache, as the optimal allocation may vary
with different impatience model. We have seen that pas-
sive replication, ending in proportional allocation, can
perform very badly, but that one can tune an adaptive
replication scheme to approach the performance of the
optimal in a large number of settings, based only on
local information.

We believe these results may serve as a stepping stone
to address other unique specific characteristics of P2P
caching in opportunistic system. It offers a reference
case from which one can study (1) the impact of het-
erogeneity and complex mobility property, (2) clustered
and evolving demands in peers, as distributed mecha-
nism like QCR naturally adapts to spatio-temporal vari-
ations. Another important aspect to address is how to
estimate the impatience function implicitly from user
feedback, instead of assuming that it is known.

8. ACKNOWLEDGMENT
We would like to gratefully acknowledge Nikodin Ris-

tanovic, Stratis Ioannidis and Laurent Massoulié for
their advices and their help during the preparation of
this work.

9. REFERENCES
[1] A. Balasubramanian, B. Levine, and

A. Venkataramani. DTN Routing as a Resource
Allocation Problem. In Proc. ACM SIGCOMM,
August 2007.

[2] C. Boldrini, M. Conti, and A. Passarella.
Contentplace: social-aware data dissemination in
opportunistic networks. In Proc. ACM MSWiM,
2008.

[3] S. Boyd and L. Vandenberghe. Convex
Optimization. Cambridge University Press, 2004.

[4] A. Chaintreau, J.-Y. L. Boudec, and
N. Ristanovic. The age of gossip: spatial mean
field regime. In Proc. of ACM SIGMETRICS,
2009.

[5] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot,
J. Scott, and R. Gass. Impact of human mobility
on opportunistic forwarding algorithms. IEEE
Trans. Mob. Comp., 6(6):606–620, 2007.

12

-2

-5

-10

-50

-100

-200

-500
-2 -1.5 -1 -0.5 0 0.5 1

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for step impatience Function

QCR
SQRT
PROP

UNI
DOM

(a) Power function, Actual Trace

0

2

5

-2
-5

-10

-50

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (α) for power impatience Function

QCR
SQRT
PROP

UNI
DOM

(b) Step function, Actual Trace

0

-2

-5

-10

 1 10 100 1000

N
or

m
al

iz
ed

 L
os

s
of

 U
til

ity
 c

om
pa

re
d

to
 o

pt
im

al
 (

%
)

Parameter (τ) for power impatience Function

QCR
SQRT
PROP

UNI
DOM

(c) Step function, Synthetic Trace

Figure 6: Cabspotting, Utility (in normalized comparison w.r.t. optimal allocation) for different
impatience functions

[6] E. Cohen and S. Shenker. Replication strategies in
unstructured peer-to-peer networks. SIGCOMM
Comput. Commun. Rev., 32(4):177–190, 2002.

[7] P. Costa, C. Mascolo, M. Musolesi, and G. Picco.
Socially-aware routing for publish-subscribe in
delay-tolerant mobile ad hoc networks. IEEE
Jsac, 26(5):748–760, June 2008.

[8] J. Greifenberg and D. Kutscher. Efficient
publish/subscribe-based multicast for
opportunistic networking with self-organized
resource utilization. In Proc. AINAW, 2008.

[9] M. Grossglauser and D. Tse. Mobility increases
the capacity of ad hoc wireless networks.
IEEE/ACM Trans. on Net., 10(4):477–486, 2002.

[10] G. Karlsson, V. Lenders, and M. May.
Delay-tolerant broadcasting. IEEE Transactions
on Broadcasting, 53:369–381, 2007.

[11] V. Lenders, M. May, and G. Karlsson. Wireless
ad hoc podcasting. In Proc. IEEE SECON, 2007.

[12] C. Lindemann and O. P. Waldhorst. Modeling
epidemic information dissemination on mobile
devices with finite buffers. In Proc. ACM
Sigmetrics, 2005.

[13] G. Nemhauser, L. Wolsey, and M. Fisher. An
analysis of the approximations for maximizing
submodular set functions. Mathematical
Programming, 14, 1978.

[14] M. Papadopouli and H. Schulzrinne. Effects of
power conservation, wireless coverage and
cooperation on data dissemination among mobile
devices. In Proc. ACM MobiHoc, 2001.

[15] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and
S. Keshav. Low-cost communication for rural
internet kiosks using mechanical backhaul. In
Proc. ACM MobiCom, 2006.

[16] G. Sollazzo, M. Musolesi, and C. Mascolo.
Taco-dtn: a time-aware content-based
dissemination system for DTN. In Proc. ACM
MobiOpp, 2007.

[17] S. Tewari and L. Kleinrock. Proportional
replication in peer-to-peer networks. In Proc.
INFOCOM, 2006.

[18] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A
socio-aware overlay for pub/sub communication in
DTN. In Proc. ACM MSWiM, 2007.

13

APPENDIX

A. PROOFS

A.1 General Expression for U

Proof of Lemma 1.
We use the following two facts:
Let X be a geometric random variables in { 1, 2, · · · }

with probability of success r, then for any functions f

E [f(X)] = f(1) −
∑

k≥1

(1 − r)k(f(k) − f(k + 1)) . (8)

It follows a simple Abel transformation of the series
defining the expectation of this variable.

Similarly, let X be an exponential random variable
with parameter λ, then we have, for any derivable func-
tion f defined on [0,∞[which admits a limit in 0+:

E [f(X)] = f(0+) +

∫ ∞

0

exp (−λt) f ′(t)dt . (9)

It follows from a simple integration by part.
Whenever a demand for item i is created in client

node n, two possible cases occur: Either the node is also
a server and it contains a version of this item (i.e., n ∈
S and xi,n = 1), or the item has to be request from
a server node. In the former case, the demand is ful-
filled immediately in the next time slot, and the demand
creates a gain h(δ) for this user. Otherwise, it may
be fulfilled whenever a node meets a server node that
stores this item. For any time slot, this client node’s
request may be fulfilled by server m with probability
(xi,m · µm,n · δ). Hence the number of trials before this
request is fulfilled follows a geometric random variable
in { 1, 2, · · · } with a probability of success

ri,n = 1 −
∏

m∈S

(1 − xi,mµm,nδ) .

We may then write that the expected gain for an item
i requested at node n is

E [Ui,n] = xi,nh(δ) + (1 − xi,n)E [h(δ ·X)] ,

where X is a geometric random variable with success
probability ri,n, and xi,n = 0 by convention whenever
n /∈ S. Combining the above inequality with Eq.(8) we
have:

E [Ui,n] = h(δ)−(1−xi,n)
∑

k≥1

(1−r)k(h(δk)−h(δ (k + 1))) .

After replacing r and using the differential impatience
function c, we obtain the expression of the lemma.

In a continuous time contact model, when the node i
does not possess a copy of item i, the time elapsed before
this request can be fulfilled is an exponential random

variable with parameter:
∑

m∈S

xi,mµm,n .

The result then follows from the exact same argument
and Eq.(9).

Application to Homogeneous contact case.
In the homogeneous contact case, the expression for

U simplifies: Let us start with the dedicated node
case first. In the discrete time case, one can see

∏

m∈S

(1 − xi,mµm,nδ) = (1 − µδ)
xi .

Moreover, in the dedicated node case, for any n ∈ C, n /∈
S and hence xi,n is null by convention. The expression
of Ui,n from Lemma 1 hence can be rewritten:

Ui,n(x) = hi(δ) −
∑

k≥1

(1 − µδ)
k·xi ci(k · δ) .

This expression does not depend on n anymore, and we
have

U(x) =
∑

i

di

∑

n∈C

πi,nUi,n

=
∑

i

di



hi(δ) −
∑

k≥1

(1 − µδ)
k·xi ci(k · δ)



 ,

which implies Eq.(2).
In the continuous time case, we first observe that

∑

m∈S

xi,mµm,n = xi · µ .

As a consequence, following the same argument as be-
fore,

Ui,n(x) = hi(0
+) −

∫ ∞

0

exp (−txi · µ) ci(t)dt .

This expression does not depend on n any more, and
implies that U(x) can be written as Eq.(3).

We now consider the pure P2P case, where all
nodes are server, and we assume that profile are uni-
form among users (i.e., πi,n = 1/N).

Ui,n(x) = hi(δ) − (1 − xi,n)
∑

k≥1

(1 − µδ)k·xi ci(k · δ) .

For n such that xi,n = 1 we have Ui,n = hi(δ), this
case occurs exactly xi times. For all other value of n we
have the same expression as in the dedicated node case
above, this case occurs exactly N − xi times. Hence we
deduce:
∑

n∈C

πi,nUi,n =
∑

n∈C

1

N
Ui,n

= hi(δ) −
N − xi

N

∑

k≥1

(1 − µδ)
k·xi ci(k · δ) .

14

This proves Eq.(4). A similar argument for the contin-
uous case yields Eq.(5).

A.2 Submodularity and Concavity property

Proof of Theorem 1.
It is sufficient to prove that, for a given item i and a

client node n, Ui,n is a submodular function of the set
{ m ∈ S | xi,m = 1 }, since the sum of supermodular
functions is supermodular.

Let us fix an item i and a client node n. For any
subset A of S, we introduce the following set function:

σ : A 7→
∏

m∈A

(1 − µm,n · δ) ,

We may redefine Ui,n as a set function such that
Ui,n(A) is given by:

hi(δ) − (1 − I{n∈A})
∑

k≥1

σ(A)kci(k · δ) .

We first observe that, for any k ≥ 1, the function
f : A 7→ σ(A)k is supermodular. Indeed, we have for
any subset A ⊆ S and m ∈ S:

f(A∪{m})−f(A) = I{m/∈A} ·σ(A)k
(

(1 − µm,n)k − 1
)

.

For A ⊆ B, we have

I{m/∈A} (σ(A))
k ≥ I{m/∈B} (σ(B))

k ≥ 0 ,

since both terms are positive non-increasing set function
(w.r.t. set inclusion). As

(

(1 − µm,n)k − 1
)

is always
non-positive, we deduce for A ⊆ B

f(A ∪ {m}) − f(A) =
(

(1 − µm,n)k − 1
)

I{m/∈A} · σ(A)

≤
(

(1 − µm,n)k − 1
)

I{m/∈B} · σ(B)
≤ f(B ∪ {m})− f(B) .

We deduce for any k, f is a supermodular function,
which is also positive. A weighted sum, with positive
weights, of supermodular function is a supermodular
function. Hence, since ci(k · δ) is positive as the impa-
tience function hi is non-increasing, we deduce

A 7→
∑

k≥1

σ(A)kci(k · δ) ,

is a supermodular function. We also deduce that it is
positive. We now observe that g : A 7→ (1− I{n∈A}) is a
positive supermodular function. Indeed, we may write

g(A ∪ {m}) − g(A) = −I{m/∈A}I{m=n} .

which is, again, a non-decreasing function of A (w.r.t.
the set inclusion).

Finally as a product of positive supermodular func-
tion is positive and supermodular, we deduce that Ui,n

may be written as a constant minus a positive super-
modular function. It is hence by definition submodular.

The same argument holds for a continuous time model:
We first introduce the following set function defined on
all subset A of S:

σ̃ : A 7→
∑

m∈A

µm,n ,

We may redefine Ui,n for the continuous time model
as a set function such that Ui,n(A) is given by:

hi(0
+) − (1 − I{n∈A})

∫ ∞

0

exp (−t · σ̃(A)) ci(t)dt .

We first observe that, for any t ≥ 0, the function
f : A 7→ exp(−t · σ̃(A)) is supermodular. Indeed, we
have for any subset A ⊆ S and m ∈ S:

f(A ∪ {m})− f(A) = I{m/∈A} · e−tσ̃(A)
(

e−tµm,n − 1
)

.

For A ⊆ B, we have I{m/∈A} ·e−tσ̃(A) ≥ I{m/∈B} ·e−tσ̃(B) ,
since both are positive non-increasing function of the
set. As, for any m (e−tµm,n − 1) is non-positive, we
deduce for A ⊆ B

f(A ∪ {m})− f(A) = I{m/∈A} · e−tσ̃(A)
(

e−tµm,n − 1
)

≤ I{m/∈B} · e−tσ̃(B)
(

e−tµm,n − 1
)

≤ f(B ∪ {m})− f(B) .

We deduce that, whatever be the value of t, f is a su-
permodular function, which is also positive. A weighted
sum, with positive weights, of supermodular function is
a supermodular function, which also generalizes to in-
tegral of function multiplied by a positive term. Hence,
since ci(t) is by definition positive for any value of t we
deduce that

A 7→
∫ ∞

0

exp (−t · σ̃(A)) ci(t)dt ,

is a supermodular function. We also deduce that it
is positive. Recall that A 7→ (1 − I{n∈A}) is a posi-
tive supermodular function. Hence, again, as a product
of positive supermodular function is supermodular and
positive, we deduce that Ui,n may be written as a con-
stant minus a positive super-linear function. It is hence
by definition submodular.

Proof of Theorem 2.
With homogeneous contacts between nodes, the so-

cial welfare only depends on the total number of copies
xi of each item i. Let us start with the dedicated node
case under the discrete time contact model. In this case,
we have

U(x) =
∑

i∈I

di



h(δ) −
∑

k≥1

(1 − µδ)xik ci(k · δ)



 .

We first observe that, if we allow xi to take real num-
ber value, U is a concave function of the {xi|i ∈ I}. It
comes from the fact that, for any k ≥ 1, the function

x 7→ (1 − µδ)
xk
,

15

is convex. U is then a weighted sum of concave functions
with positive coefficient (since c(k · δ) is non-negative
for all k). The same argument applies to show that
the relaxed optimization for continuous time, as well as
for the pure P2P case, satisfy the same property, from
Eq.(3)-(5).

This proves the second half of theorem and directly
implies that there exists a unique maximum of the re-
laxed optimization which can be found through gradient
descent algorithm [3].

The only remaining point to prove the theorem is
to show that, for the original problem where xi only
takes integer values, the maximum can be obtained by
a greedy procedure

For any x = {xi|i ∈ I}, we denote by ∆U
∆xi

(x) the
marginal improvement obtained when another copy of
item i is created. It is defined by

∆U

∆xi
(x) = U(x1, . . . , xi−1, xi +1, xi+1, . . . , xM)−U(x) .

One key observation is that, for a given i ∈ i, the
marginal improvement ∆U

∆xi
(x) is independent of xj for

all j 6= i. Note that this is intuitive, as for a fixed num-
ber of copies of a given item, the delay or waiting time
to find this item is not impacted by how much copies of
other items are available. In other words, we may write
∆U
∆xi

(x) = fi(xi), where

fi(x) = di

∑

k≥1

(1 − µδ)
xk
(

1 − (1 − µδ)
k
)

ci(k · δ) .

In summary, the value of the social welfare can be
decomposed, for each item i, as a sum of xi terms that
are values of a function fi:

U(x) =
∑

i∈I

(fi(1) + fi(2) + · · · + fi(xi)) . (10)

Another important observation is that, owing to the
concavity of the function U (established above), the
function fi above are all non-increasing.

We will now prove that a greedy procedure can find
the allocation with maximum social welfare. Let us first
define two optimization problems.

OPT(C): max
∑

i∈I

∑

l∈{1,2,··· ,xi}

fi(l) such that

1 ≤ xi ≤ |S| ,
∑

i∈I

xi ≤ C

SETOPT(C): max
∑

i∈I

∑

l∈Ai

fi(l) such that

Ai ⊆ N
∗ , 1 ≤ |Ai| ≤ |S| ,

∑

i∈I

|Ai| ≤ C

The problem OPT(C) with (C = ρ · |S|) is exactly the
problem we wish to solve. The problem SETOPT(C)
is only defined for the need of the proof: it is a slightly

more general problem in the sense that it does not re-
quire to look at sum of values of fi on contiguous in-
tegers, but can consider values of functions fi on any
collection of subsets.

We start by the two following simple results:

Lemma 2. When the functions fi are non-increasing
for all i, the two optimization problems are equivalent:

We have ∀i ∈ I , Ai = {1, 2, . . . , xi} .
where { xi | i ∈ I } (resp. { Ai | i ∈ I }) denotes the
solution of OPT(C) (resp. SETOPT(C)).

One can easily show that the Ai should be made of
contiguous integers starting from 1 (If that is not the
case, is is easy to construct an even better choice of
Ai to maximize the sum). Owing to this fact, the two
problems are equivalent and the result above holds.

Lemma 3. Let { Ai | i ∈ I } and { Bi | i ∈ I } be
the solutions of SETOPT(C) and SETOPT(C + 1).

• for any i ∈ I, Ai ⊆ Bi.

• The only j such that Bj 6= Aj satisfies

j = argmax

{

max
l/∈Ai

fi(l)

∣

∣

∣

∣

i ∈ I, |Ai| < |S|
}

.

Since A cannot contain B due to size constraint, there
exists j and a such that a ∈ Bj and a /∈ Aj . Let B′

j =
Bj \ {a} and B′

i = Bi for all i 6= j. Then the collection
of all subsets B′

j for all j ∈ I satisfies the conditions of
problem SETOPT(C). By optimality of B we should
have B′

i = Ai for all i ∈ I (otherwise one could always
construct an even better choice than B. This concludes
the proof, as again, if the second property does not hold,
one can construct an even better solution starting from
the subsets Ai and adding one element.

As a consequence of the two lemmas, when all func-
tions fi for all i are non-increasing, we deduce that
if { xi | i ∈ I } and { yi | i ∈ I } are the solutions of
OPT(C) and OPT(C + 1) then
{

yj = xj + 1 if j = argmaxi{fi(xi + 1)|xi < |S|}
yj = xj otherwise .

This can be used as a recursive rules to deduce the
optimal allocation for any cache size C. This is what Al-
gorithm 1, defined below, implements in at most O(|I|+
ρ|S| · ln(|I|)) steps (since the search for the maximum
improvement can be run in at most O(ln(|I|) with a
priority queue).

The proof was conducted here in the discrete time
for the dedicated node case, the same exact argument
applies to pure P2P case, where fi is defined as

fi(x) = di(1−
x

N
)
∑

k≥1

(1 − µδ)
xk
(

1 − (1 − µδ)
k
)

ci(k·δ) .

16

Algorithm 1 Max Welfare (Homogeneous contact).

xi ← 1;sum←M ;
A = { 1, 2, · · · , M };
for all i ∈ A do

impi ←
∆U

∆xi
(x);

end for

while sum ≤ ρ|S| do

pick j = arg maxi { impi | i ∈ A };
xj ← xj + 1; sum← sum + 1;
impj ←

∆U

∆xi
(x);

if xj = |S| then

A← A \ {j};
end if

end while

Similarly, we can prove the same result for a continuous
time contact model, where fi is defined in the dedicated
node case as

fi(x) = di

∫ ∞

0

e−µt·x
(

1 − eµt
)

ci(t)dt ,

and in the pure p2p case as

fi(x) = di(1 − x

N
)

∫ ∞

0

e−µt·x
(

1 − eµt
)

ci(t)dt .

All these functions are positive and non-increasing, which
allows to use the exact same proof.

A.3 Proof of Theorem 3
In the continuous time contact model an dedicated

node we have:

U(x) =
∑

i∈I

di

(

h(0+) −
∫ ∞

0

e−tµxici(t)dt

)

.

Note that it implies
∂U

∂xi
(x) = diϕ(xi) . where ϕ is de-

fined as in Theorem 3.
Let us assume that x̃i < |S|, x̃j < |S|. If we have

di ·ϕ(x̃i) < dj ·ϕ(x̃j), then there exists ε > 0 such that
U(x′) > U(x̃) where we define x′ as







x′j = x̃j + ε
x′i = x̃i − ε
x′k = x̃k for k 6= i, k 6= j .

This contradicts the optimality of x̃, and proves that
the equilibrium condition holds.

A.4 Singularity of h at t = 0

As shown in Lemma 1, Ui,n(x) and U(x) may be
expressed in a simple form when h(0+) < ∞. In the
dedicated node case, where servers and clients are in
disjoint sets, the same expression generalizes to other
types of impatience function where h(0+) = ∞. As an
example, we treat here the case of the negative loga-

rithm (i.e., h
(p)
α with α = 1) and the inverse powers

(i.e., h
(p)
α with α > 1).

Since we are in the dedicated node case, we have

Ui,n(x) = E [h(X)] ,

where X is an exponential random variable with pa-
rameter

∑

m∈S xi,mµm,n, that we can denote by µi,n

for short.

Expression ofUi,n for the Negative logarithm.
When α = 1, the impatience function is defined as

h
(p)
1 : t 7→ − ln(t). Hence we have :

Ui,n(x) =

∫ ∞

0

µi,n exp (−tµi,n) (− ln(t))dt .

A simple change of variable leads to

Ui,n(x) =

∫ ∞

0

(ln(µi,n) − ln(u)) e−udu

= ln

(

∑

m∈S

xi,mµm,n

)

−
∫ ∞

0

ln(u)e−udu .

This allows to compute U thanks to

U(x) =
∑

i∈I

di

∑

n∈C

πi,nUi,n(x) .

This expression simplifies for the case of homogeneous
contact as follows

U(x) =
∑

i∈I

di ln (xi) + cst, where

cst =
∑

i∈I

di

(

ln (µ) −
∫ ∞

0

ln(u)e−udu

)

.

Consequence on Theorem 1 and 2.
We first note that it proves that Ui,n is, as a set func-

tion, submodular (which extends the results of The-
orem 1). Indeed, with similar notation than in Sec-
tion A.2, we can write:

Ui,n(A) = ln (σ̃(A)) −
∫ ∞

0

ln(u)e−udu .

which proves this result. We also deduce that the ar-
gument for the proof of Theorem 2 holds, since we can
write ∆U

∆xi
(x) = fi(xi) with

fi(x) = di ln

(

1 +
1

xi

)

.

which is a positive non-increasing function.

Expression ofUi,n for the inverse powers.
When 1 < α < 2, we have that h

(p)
α : t 7→ t1−α

α−1 , and
we may write in the dedicated node case:

Ui,n(x) =

∫ ∞

0

µi,n exp (−tµi,n)
t1−α

α− 1
dt .

17

Again, a simple change of variable yields

Ui,n(x) = (µi,n)
α−1

∫ ∞

0

exp (−u) u
1−α

α− 1
du

=
Γ(2 − α)

α− 1

(

∑

m∈S

xi,mµm,n

)α−1

.

This equation can be used to derive U(x) in the general
case. For homogeneous contact case, it simplifies to

U(x) =
Γ(2 − α)

α− 1
µα−1

∑

i∈I

di (xi)
α−1

.

Consequence on Theorem 1 and 2.
We have, with similar notation than in Section A.2,

Ui,n(A) =
Γ(2 − α)

α− 1
(σ̃(A))

α−1
.

For any 1 < α < 2, the function x 7→ xα−1 is concave.
The formula above proves that Ui,n is again in this case,
a submodular function, extending again the results of
Theorem 1 to a new class of function.

Again the argument for the proof of Theorem 2 holds,
as we have ∆U

∆xi
(x) = fi(xi) with

fi(x) = di
Γ(2 − α)

α− 1

(

(x+ 1)α−1 − xα−1
)

.

which is a positive non-increasing function.
As a conclusion, although the exact computation may

differ, the exact same arguments why all the results of
this paper applies to a general impatience function with
a limit in 0+ holds for a general family of impatience
function even when it diverges in 0. It should be pos-
sible to prove this result more generally, as well as to
obtain similar expressions for the discrete time case, but
this is beyond the scope of this current work.

A.5 Table condition in the pure P2P case
In the continuous time contact model an pure p2p

case we have:

U(x) =
∑

i∈I

di

(

h(0+) − (1 − xi

N
)

∫ ∞

0

e−tµxici(t)dt

)

.

Note that it implies
∂U

∂xi
(x) = diϕ

′(xi) where

ϕ′(x) = (1 − x

N
)ϕ(x) +

1

N

∫ ∞

0

e−tµxc(t)dt .

In other words, just like Theorem 3 applies to the ded-
icated node case, a similar equilibrium condition exists
for the optimality in the pure p2p case. We just need to
define another function ϕ′ which contains a correcting
term, that is small when N is large.

The main consequence is that, just like Theorem 4,
there exists a demand reaction function which is exactly

optimal in the pure p2p case. This reaction function is
shown in Table 2. As it can be seen on the table, most
of the time the correction term is small, which is why
we did not use this version in the simulations.

B. FULL NUMERICAL RESULTS
In this section we present, for completeness, the result

we obtain across all parameters we used for validation.

B.1 Impact of cache size and popularity dis-
tribution

Figure 7 presents the difference in Utility as taken
from optimal, for the step impatience function with dif-
ferent value of τ (on the x-axis), for the same strategies
as in Section 6. The difference with previous results is
that results are also shown for a smaller cache size ρ = 2
and a larger cache size ρ = 10. Note that we also repro-
duce the result for ρ = 5 (the default value) to allow for
an easy comparison. As it can be seen, although there
are small numerical differences, it plays almost no role
in the qualitative behaviors, across all contact traces.

Figure 8, presents the same result as above, except
that we consider an highly skewed distribution (i.e., ω =
2) and a moderately skewed distribution (i.e., ω =
1/2), compared with the default case where ω is equal
to 1. We recall that ω corresponds to the skewness
of the popularity of file as: di ∝ i−ω. As expected,
a moderately skewed distribution tends to improve the
performance of uniform and decreases that of the dom-
inated allocation. A highly skewed distribution seems
to even out most of the strategies across all data sets,
except for uniform which performs badly.

B.2 Full results for the homogeneous case
We consider in this section a network with homoge-

neous contact among the nodes. Figure 4 already pre-
sented for different family of impatience functions the
respective performance of the different algorithms. Fig-
ures 9 and 10 present in more details the content of the
cache, and the utility obtained as a function of time for
one run of each of this impatience functions.

B.3 Full results for real contact traces
We now present the same full results (cache and util-

ity perceived as a function of time for the contact traces
(as well as the synthetic contact traces, which represents
the heterogeneity of contact only).

Figures 11 and 12 present the result for the Infocom
datasets and the step impatience function (with ρ = 5.

Figure 13 and 14 present the same results for the
Vanet data sets with power impatience functions.

Finally 15-20 present the results for the Vanet data
sets, with step impatience functions and several values
of ρ.

18

Model Step function Exponential decay Neg. Power
(α < 1)

Impatience h(t) I{t≤τ} exp (−νt) t1−α

α− 1
Diff. impat. c Dirac at t = τ density t 7→ ν exp (−νt) density t 7→ t−α

Gain Ui,n(x) 1 − (1 − xi

N)e−µτxi 1 − (1 − xi

N)
(

1 + µ
ν xi

)−1
µα−1Γ(1 − α)

(

−(xi)
α−1 + 1

N (xi)
α
)

Cond. ϕ′ di ·
(

µτ + 1−µτxi

N

)

e−µτxi di ·
(

µ
ν − 1

N

) (

1 + µ
ν xi

)−2
di · µα−1Γ(1 − α)

(

(1 − α)xα−2
i + 1

N αx
α−1
i

)

Reaction ψ
µτ + 1−µτ/y

N

y
e−

µτ

y

(

1 − ν
µ

1
N

)(

2 + ν
µy + µ

ν
1
y

)−1

µα−1Γ(1 − α)
(

(1 − α)y1−α + 1
N αy

−α
)

Table 2: Optimal demand reaction and cache allocation for several usual impatience functions (ded-
icated cache case).

(a) Homogeneous ρ = 2 (b) VANET ρ = 2 (c) VANET Synth ρ = 2 (d) Infocom ρ = 2 (e) Infocom Synth ρ = 2

(f) Homogeneous ρ = 5 (g) VANET ρ = 5 (h) VANET Synth ρ = 5 (i) Infocom ρ = 5 (j) Infocom Synth ρ = 5

(k) Homogeneous ρ =
10

(l) VANET ρ = 10 (m) VANET Synth ρ =
10

(n) Infocom ρ = 10 (o) Infocom Synth ρ =
10

Figure 7: Impact of the cache size ρ (I=10, N=50, ω = 1).

19

(a) Homogeneous ω =
1/2

(b) VANET ω = 1/2 (c) VANET Synth ω =
1/2

(d) Infocom ω = 1/2 (e) Infocom Synth ω =
1/2

(f) Homogeneous ω = 1 (g) VANET ω = 1 (h) VANET Synth ω =
1

(i) Infocom ω = 1 (j) Infocom Synth ω = 1

(k) Homogeneous ω = 2 (l) VANET ω = 2 (m) VANET Synth ω =
2

(n) Infocom ω = 2 (o) Infocom Synth ω =
2

Figure 8: Impact of the popularity distribution of items ω (I=10, N=50, ρ = 5).

20

(a) Cache (τ = 1) (b) Utility (τ = 1) (c) Pred. Utility (τ = 1)

(d) Cache (τ = 10) (e) Utility (τ = 10) (f) Pred. Utility (τ = 10)

(g) Cache (τ = 32) (h) Utility (τ = 32) (i) Pred. Utility (τ = 32)

(j) Cache (τ = 100) (k) Utility (τ = 100) (l) Pred. Utility (τ = 100)

(m) Cache (τ = 1000) (n) Utility (τ = 1000) (o) Pred. Utility (τ = 1000)

Figure 9: Homogenous Mixing, Step Impatience: Experienced Utility, Predicted Utility, and Cache
Evolution Over Time for µ = 0.05, ρ = 5, I = 50, N = 50, ω = 1

21

(a) Cache (α = 0.9) (b) Utility (α = 0.9) (c) Pred. Utility (α = 0.9)

(d) Cache (α = 0.5) (e) Utility (α = 0.5) (f) Pred. Utility (α = 0.5)

(g) Cache (α = 0) (h) Utility (α = 0) (i) Pred. Utility (α = 0)

(j) Cache (α = −1) (k) Utility (α = −1) (l) Pred. Utility (α = −1)

(m) Cache (α = −2) (n) Utility (α = −2) (o) Pred. Utility (α = −2)

Figure 10: Homogenous Mixing, Power Impatience: Utility, Predicted Utility, and Cache Evolution
Over Time for µ = 0.05, ρ = 5, I = 50, N = 50, ω = 1

22

(a) Actual Trace (b) Synthesized Trace

Figure 11: Infocom ’06 Trace, Step Impatience - Understanding Impact of Time Statistics on Avg
Behavior

23

(a) Cache (τ = 1) (b) Utility (τ = 1) (c) (Synthetic) Cache (τ = 1) (d) (Syntetic) Utility (τ = 1)

(e) Cache (τ = 10) (f) Utility (τ = 10) (g) (Synthetic) Cache (τ = 10) (h) (Syntetic) Utility (τ = 10)

(i) Cache (τ = 32) (j) Utility (τ = 32) (k) (Synthetic) Cache (τ = 32) (l) (Syntetic) Utility (τ = 32)

(m) Cache (τ = 100) (n) Utility (τ = 100) (o) (Synthetic) Cache (τ =
100)

(p) (Syntetic) Utility (τ =
100)

(q) Cache (τ = 1000) (r) Utility (τ = 1000) (s) (Synthetic) Cache (τ =
1000)

(t) (Syntetic) Utility (τ =
1000)

Figure 12: Infocom ’06, Step Impatience - Timewise Results for ρ = 5, I = 50, N = 50, ω = 1

24

Figure 13: VANET Trace, Power Impatience, Util vs. α

25

(a) MA VANET (α = 0.9) (b) Cache VANET (α = 0.9)

(c) MA VANET (α = 0.5) (d) Cache VANET (α = 0.5)

(e) MA VANET (α = 0) (f) Cache VANET (α = 0)

(g) MA VANET (α = −1) (h) Cache VANET (α = −1)

(i) MA VANET (α = −2) (j) Cache VANET (α = −2)

Figure 14: VANET Trace, Power Impatience for ρ = 5, I = 50, N = 50, ω = 1

26

(a) Actual Trace (b) Synthesized Trace

Figure 15: VANET Trace, Step Impatience (ρ = 2) - Understanding Impact of Time Statistcs on Avg
Behavior

27

(a) Cache (τ = 1) (b) Utility (τ = 1) (c) (Synthetic) Cache (τ = 1) (d) (Syntetic) Utility (τ = 1)

(e) Cache (τ = 10) (f) Utility (τ = 10) (g) (Synthetic) Cache (τ = 10) (h) (Syntetic) Utility (τ = 10)

(i) Cache (τ = 32) (j) Utility (τ = 32) (k) (Synthetic) Cache (τ = 32) (l) (Syntetic) Utility (τ = 32)

(m) Cache (τ = 100) (n) Utility (τ = 100) (o) (Synthetic) Cache (τ =
100)

(p) (Syntetic) Utility (τ =
100)

(q) Cache (τ = 1000) (r) Utility (τ = 1000) (s) (Synthetic) Cache (τ =
1000)

(t) (Syntetic) Utility (τ =
1000)

Figure 16: VANET, Step Impatience - Timewise Results for ρ = 2, I = 50, N = 50, ω = 1

28

(a) Actual Trace (b) Synthesized Trace

Figure 17: VANET Trace, Step Impatience - Understanding Impact of Time Statistcs on Avg Be-
havior

29

(a) Cache (τ = 1) (b) Utility (τ = 1) (c) (Synthetic) Cache (τ = 1) (d) (Syntetic) Utility (τ = 1)

(e) Cache (τ = 10) (f) Utility (τ = 10) (g) (Synthetic) Cache (τ = 10) (h) (Syntetic) Utility (τ = 10)

(i) Cache (τ = 32) (j) Utility (τ = 32) (k) (Synthetic) Cache (τ = 32) (l) (Syntetic) Utility (τ = 32)

(m) Cache (τ = 100) (n) Utility (τ = 100) (o) (Synthetic) Cache (τ =
100)

(p) (Syntetic) Utility (τ =
100)

(q) Cache (τ = 1000) (r) Utility (τ = 1000) (s) (Synthetic) Cache (τ =
1000)

(t) (Syntetic) Utility (τ =
1000)

Figure 18: VANET, Step Impatience - Timewise Results for ρ = 5, I = 50, N = 50, ω = 1

30

(a) Actual Trace (b) Synthesized Trace

Figure 19: VANET Trace, Step Impatience (ρ = 10) - Understanding Impact of Time Statistcs on
Avg Behavior

31

(a) Cache (τ = 1) (b) Utility (τ = 1) (c) (Synthetic) Cache (τ = 1) (d) (Syntetic) Utility (τ = 1)

(e) Cache (τ = 10) (f) Utility (τ = 10) (g) (Synthetic) Cache (τ = 10) (h) (Syntetic) Utility (τ = 10)

(i) Cache (τ = 32) (j) Utility (τ = 32) (k) (Synthetic) Cache (τ = 32) (l) (Syntetic) Utility (τ = 32)

(m) Cache (τ = 100) (n) Utility (τ = 100) (o) (Synthetic) Cache (τ =
100)

(p) (Syntetic) Utility (τ =
100)

(q) Cache (τ = 1000) (r) Utility (τ = 1000) (s) (Synthetic) Cache (τ =
1000)

(t) (Syntetic) Utility (τ =
1000)

Figure 20: VANET, Step Impatience - Timewise Results for ρ = 10, I = 50, N = 50, ω = 1

32

