
VMTorrent: Virtual Appliances On-Demand

Joshua Reich, Oren Laadan, Eli Brosh, Alex Sherman, Vishal Misra, Jason Nieh,
Dan Rubenstein

Department of Computer Science, Columbia University
reich,orenl,elibrosh,asherman,misra,nieh,danr@cs.columbia.edu

Categories and Subject Descriptors

D.4 [Operating Systems]: Miscellaneous

General Terms

Algorithms, Design, Performance

Keywords

BitTorrent, Cloud Computing, File Systems, On-Demand
Delivery, P2P, Swarming, Virtual Appliances, Virtual Ma-
chines

1. INTRODUCTION
Virtual Appliances (VAs) are Virtual Machines (VMs)

geared towards a specific set of tasks. They require little or
no configuration, working out-of-the-box. VAs fit neatly into
the Cloud Computing paradigm - many copies of an identical
machine can be launched in a data center, or home/business
users can grab the appliance they need from the cloud to
run locally just for so long as required. Companies and
projects whose sole offerings are VAs ready for either desk-
top or data center use [3, 11] attest to the growing popularity
of VAs. VMware’s Appliance directory alone currently lists
over 1400 VAs available for the VMware family of Virtual
Machine Monitors (VMMs) [13].

Current VA distribution generally requires download of
the complete virtual disk image, only after which the VA
can be run. Given that compressed VA sizes run anywhere
from several hundred MB to a few GB, there can be sig-
nificant delays from the time a user decides he/she wants
to run a particular VA until the time that VA can be used.
These problems are only exacerbated when demand for par-
ticular VAs spikes and server bandwidth resources become
the distribution bottleneck.

To address these issues, we have built a peer-to-peer solu-
tion (VMTorrent) to support quick and scalable launching
of VAs on-demand. Our solution is applicable to home, en-
terprise, and data-center settings and agnostic of the partic-
ular VMM used (e.g., VMware Player [14], VirtualBox [12],
Kernel Virtual Machine (KVM) [4]). VMTorrent provides
architectural support for efficient just-in-time deployment
and execution of VAs. When a new guest VM is spawned,
the system begins downloading the required disk image from
a P2P swarm. VMTorrent aims to fetch disk image blocks

Copyright is held by the author/owner(s).
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
ACM 978-1-4503-0201-2/10/08.

1: Overall VMTorrent architecture

(encapsulated in Bittorrent pieces) in time for their use by
the VMM. VMTorrent does so by adjusting peers’ piece
selection strategies to prioritize those pieces that are needed
to ensure the least possible user experienced delay. In this,
VMTorrent resembles P2P on-demand video streaming [2]
which selects pieces from the playback window with higher
priority, while still acquiring enough random pieces to ensure
sufficient diversity.

However, unlike video streaming, playback of VMs is both
less structured (pieces are often not used in order) and less
predictable (after boot-up a user may do any of several tasks
- each accessing a different sequence of virtual disk image
blocks). Moreover, while video streams will generally even-
tually use all blocks of the stream, we have found that only
a minority of VA blocks (e.g., 10%) are needed to support
user tasks (e.g., many programs, drivers, and files are never
used in the average execution). Consequently, VMTorrent

consults a set of schedule profiles associated with each guest
VM to determine the optimal streaming order - dependent
on the expected execution pattern. Execution patterns will
differ from one task (e.g., edit a document) to another (e.g.,
display a presentation). Moreover, the actual schedule may
change dynamically in response to demand for specific blocks
from the VMM that are outside of the profile used or that
prompt transition from one profile to another that better
matches the user’s apparent usage pattern. In this way our
system facilitates fast and smooth deployment of guest VMs
while minimizing stalls due to missing data blocks.

2. ARCHITECTURE
Figure 2 illustrates the high-level operation of the system.

The figure depicts a set of hosts that are part of, or attached
to a cloud. For instance, a host can be a user’s computer

453



connected to a cloud, or a data center node inside a cloud.
Each host consists of a VMM that can run guest VMs, and
an instance of VMTorrent that provides the filesystem
services for the VMM. These services include downloading
the guest VM data and storing a locally modifiable copy of
the disk image. The collection of VMTorrent instances
forms a P2P network. Each instance also keeps a pristine
copy of the disk image so that it can serve that data to peer
VMTorrent instances.

VMTorrent essentially operates as a remote file server,
and is fully transparent to the VMM (allowing our system
to work with arbitrary VMM software). It provides a stan-
dard filesystem view that is indistinguishable from that of
other common remote filesystems such as NFS, CIFS, and
FUSE [10]. Initially the filesystem is empty. To launch a
new guest VM, VMTorrent first creates a suitable place-
holder in the filesystem for the disk image. Then, it begins
to download the contents of the disk image from the P2P
network to fill the local placeholder, while serving disk ac-
cess requests from the VMM. Pieces are downloaded based
on profiles of different execution patterns of that VA, allow-
ing the most important blocks to be fetched/pre-fetched so
as to minimize stall time. If a request arrives for a block
that is not yet present, the priority of the corresponding
piece will be increased and the VMM request will stall until
the block is obtained from the swarm.

3. DEMO
Our demo will demonstrate the use of VMTorrent for

on-demand delivery of VAs in both client-server and swarm
settings, including that of a local flash crowd. Visitors will
be provided diagnostic views of both the file server, and P2P
client as VMTorrent downloads and runs Virtual Appli-
ances of at least two different flavors (Ubuntu and Win7) in
real-time. Visitors will not only be able to see pre-scripted
executions run on these VMs but also be able to interact
with them, executing tasks of their choice from the full set
of software available on these VMs.

4. RELATED WORK
The most similar work to ours is that of [15]. This pa-

per proposes a play-on-demand solution for desktop applica-
tions. The basic idea is to store user’s data at a USB device,
and at run time, download desktop applications using P2P
(specifically, via BitTorrent). These applications are then
run in a lightweight virtualization environment. The main
focus here is on how to run an application without installa-
tion. The downloaded images here are not standalone VMs,
making this approach of more limited applicability. These
images are also significantly smaller than those of VAs, con-
sequently they do not explore execution during on-demand
download, or VM profiling.

Similarly [8] proposes the idea of using BitTorrent as fast
method to distribute VMs to student machines in a train-
ing environment. It provides a proof-of-concept, but also
focuses on a niche application space and leverages neither
on-demand download nor VM profiling. In the popular me-
dia [9] advocates the idea of using BitTorrent to perform
large scale deployments of desktop images over the WAN.

Also within this space are the Collective [1], a server-based
system delivery of managed desktops to personal computer
(PC) users. The Collective stores a portion of the managed

desktop in the local cache. While it does not profile the
particular blocks needed to support different tasks, the Col-
lective will pre-fetch and fill its cache with the most pop-
ular applications. Less popular applications are streamed
on-demand. This work evolved into the commercial solu-
tion MokaFive [7]. VM fork [6] provides a data-center ori-
ented method for instantaneously cloning a VM into multi-
ple replicas running on different hosts Finally, Internet Sus-
pend/Resume [5] was early work that allowed machines to
be suspended on one hardware platform, transferred over
the network and resumed on another using virtualization.

5. REFERENCES
[1] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S.

Lam. The Collective: A Cache-Based System
Management Architecture. In NSDI, pages 259–272,
Berkeley, CA, USA, 2005. USENIX Association.

[2] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Lui, and
C. Huang. Challenges, Design and Analysis of a
Large-scale P2P-VoD System. In ACM SIGCOMM,
Seattle, WA, USA, August 2008.

[3] Jumpbox. http://www.jumpbox.com/library.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: The Linux Virtual Machine Monitor.
In Ottawa Linux Symposium, 2007.

[5] M. Kozuch and M. Satyanarayanan. Internet
Suspend/Resume. pages 40–46. IEEE Computer
Society, 2002.

[6] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. SnowFlock: Rapid Virtual
Machine Cloning for Cloud Computing. In EuroSys,
pages 1–12, New York, NY, USA, 2009. ACM.

[7] MokaFive. http:
//www.mokafive.com/products/components.php.

[8] C. M. O’Donnell. Using BitTorrent to Distribute
Virtual Machine Images for Classes. In SIGUCCS,
pages 287–290, 2008.

[9] M. Roth. Using BitTorrent to Solve Omnipresent
Deployment Problems. ThinComputing.net, 2008.

[10] M. Szeredi. FUSE: File System in Userspace
http://fuse.sourceforge.net/.

[11] Turnkey Linux. http://www.turnkeylinux.org.

[12] VirtualBox. http://www.virtualbox.org/.

[13] VMware Appliance Marketplace.
http://www.vmware.com/appliances/directory/.

[14] VMware Player.
http://www.vmware.com/products/player/.

[15] Y. Zhang, X. Wang, and L. Hong. Portable Desktop
Applications Based on P2P Transportation and
Virtualization. In LISA, pages 133–144, 2008.

454


