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Abstract— A virtual credit exchange protocol for Mobile Ad-
hoc Networks (MANETS) is proposed to enforce the cooperation
of packet forwarding. In this protocol, each node decides a price
(i.e. the number of credits) charged for forwarding a unit amount
of traffic (i.e. one data packet). One node’s pricing decision only
depends on the prices of nodes that are going to forward packets
for it. Each node updates its price adaptively and distributively.
Under certain condition of the demand relationship between
all nodes, this protocol converges to a unique price solution
and provides sustainable and stable credit levels for all nodes.
Experiments are performed to show that rational users have
incentive to follow this protocol: 1) Setting higher prices do not
help a node obtain more service. 2) Dropping other nodes’ packets
reduces a node’s own throughput.

I. INTRODUCTION

Mobile ad-hoc networks (MANETSs) and wireless mesh
networks (WMNSs) have recently attracted much attention by
their potential applications [15], [18], [19], [1]. With the rapid
development of various wireless hardware devices and com-
munication protocols (e.g. IEEE 802.11), the implementation
of MANETs and WMNs become feasible.

Unlike traditional wired hosts, wireless nodes in ad-hoc net-
works are supposed not only to participate in the networks for
their own services, but also to forward packets for other nodes
voluntarily. This assumption is crucial for ad-hoc networks to
work properly. If all nodes come from a single authority and
work for the same objective, they have incentives to cooperate
with each other. However, nodes are generally autonomous and
naturally prone to refuse to forward packets for other nodes.
Because forwarding packets may consume costly resources
like battery power and CPU cycles'.

In order to encourage autonomous nodes to forward packets
for other nodes, incentive protocols for ad-hoc networks are
needed. However, designing incentive protocols for ad-hoc
networks has two folded challenges.

A. Theoretical and Practical Challenges

One of the two main streams of incentive work is credit
based system [9], [21], [6], [5]. 2 The fundamental concept
is that nodes have incentives to provide services (e.g. forward

! Battery power is limited for most mobile nodes. For wireless sensor nodes,
processing power is limited and becomes a scarce resource.

2The other one is trust management system or reputation system. We will
discuss it in related work.
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packets) to other nodes because they need the services pro-
vided by those nodes at a later time. During these service
exchange processes, credit plays a role as exchange medium.
For instance, nodes receive credits by forwarding packets for
other nodes and pay credits by requesting such a service.
One technical difficulty mentioned in [9] is the credit level
maintained by the system. If the credit level is too high, each
node has many credits to use and does not have incentive
to provide service in order to receive more credits. If the
credit level is too low, some nodes may not be able to obtain
enough credit so as to get its own packets relayed. Periodically
reset the system’s credit level does not solve the problem.
Because nodes do not have incentives to provide services
before the credit level resets, which brings new credits to them.
Some systems propose using monetary credits [21]. But real
money brings extra burden to the system. It requires either a
tamper proof hardware at each node or a centralized authority.
The former is difficult to achieve [3] while the latter would
weaken the self-organizing and decentralized nature of ad-hoc
networks. Lastly, pricing the service (in terms of number of
credits) is never trivial.

From a practical perspective of view, incorporating incentive
into ad-hoc networks causes more challenges. First, an incen-
tive protocol should be easy to deploy. It needs to be embedded
in or built on top of current wireless ad-hoc protocols. This
also implies that an incentive protocol must be distributed in
nature. Second, an incentive protocol should also be incentive-
compatible. This means that individual nodes will be willing to
follow the protocol for their own sakes. This guarantees that
each autonomous and self-organizing node, when given the
choice to use or not use the protocol, will follow the protocol
voluntarily.

B. Our Approaches and Contributions

In this work, we propose a budget-balanced credit based
incentive system for ad-hoc networks. From an autonomous
node’s view, we consider the following question: How many
credits should be charged for a unit amount of traffic
routed through? Our approach is different from all existing
work in the way that we make a separation of fairness and
incentive. Traditional approaches [5], [6], [21] often assume
either of the following: (1) Each node pays the same if they
obtain the same amount of services. (2) Each node obtains the
same number of credits if they provide the same amount of



workload. Due to the imbalance of the traffic demands between
nodes, neither of these two approaches can sustain a stable
credit level for each node. In our approach, although each node
pays and gains proportionally to the service obtained and the
workload done, each node decides its own price to charge for a
unit traffic going through it. As a result, each node can sustain
a credit level to afford its own traffic demand.

The choice of virtual credit in stead of monetary credit
comes naturally because we do not want to sacrifice the
self-organizing and self-contain system structure of ad-hoc
networks. The “budget-balance” feature of the protocol has
two meanings. First, when a serving node help a requesting
node forward packets, the number of credits paid from the
requesting node equals the number of credits received by the
serving node. Second, with a fixed number of nodes, the total
number of virtual credits in the network is a constant. Thus,
one can imagine that the flow of data packets should be in the
same direction of the credit flow.

Our credit exchange protocol has three advantages. First, the
protocol is incentive-compatible. This means that each node
has an incentive to follow the protocol. As we will see later,
if any node refuses to forward packets for other node at some
time, it will not obtain enough credit for its own packets got
through the network. Second, each node decide how many
credits it needs to charge distributively and adaptively. Third,
by following the protocol, not only the system has a stable
credit level (which is a constant), but individual nodes have
stable credit levels as well.

II. VIRTUAL CREDIT EXCHANGE

In this section, we consider a set of nodes that obtain
forwarding services by paying virtual credits to other nodes.
We start from a motivating example to show what the price
solutions, which sustain the forwarding demands as well as
stabilize credits, are. Next, we formalize a pricing problem
which our credit exchange protocol solves. After characteriz-
ing the price solutions from a global perspective, we finally
describe how the credit exchange protocol distributively and
adaptively obtains them.

A. A Motivating Example

Suppose we have two nodes that need each other’s help for
forwarding packets. The demand rate of node j from node ¢ is
defined as d;;, which also means that node ¢ wants node j to
forward its traffic at a rate of d;; amount of data (e.g. number
of packets) per time unit (e.g. one second).
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Fig. 1. A two-node example

Figure 1 shows the traffic directions and the according
demand rates. We define p; as the price of node ¢, which
mean the number of credit charged by node % for forwarding
a packet. We can imagine that node ¢ stores p; credits in its
packet and send it to node j. Node j obtains the credits from
the packet and forward it to the next hop (or destination). Other
implementation of the credit exchange may also be possible,
for example, the credits can be stored in the acknowledgement
packets from the destinations. Consequently, node j pays p;d;;
number of credits to node ¢ every second. Suppose each node
has a limited number of credits. In order to have enough credits
for both nodes to circulate for a long time, the credit flows
have to be balanced:

p1diz = paday or B @
p2 di2
Before we reveal the full insights of price solutions, let us
look at the above specific solution for a while. We observe
two characteristics of the solution {p1,p2}:

1) The ratio p; : po is a constant. This implies that the
price solutions only depends on price ratio rather than
the absolute value of the individual prices.

2) Prices are related to the workload done by nodes. In
the above example, each node’s price is proportional to
its demand request and inverse proportional to its own
workload.

B. The Pricing Problem

In a more general setting, we assume there are N nodes in
the system. When a node joins the network at the first time,
it receives the same amount of virtual credit from the system,
say m credits. The total number of credits circulating in a
system is proportional to the number of nodes in the system,
i.e. Nm credits in total when there are N nodes in the system.
Let us define the aggregate demand rate received by node ¢ as

N
Jj=1

If node 4 forwards all the requested packets, d; can be regarded
as the workload node ¢ has done in a unit time. Let us denote
p = (p1,p2,...,pn)T as the price vector of all nodes, where
each p; denotes the price of node i. We address the pricing
problem to be: Finding a price vector p > 0 such that every
node has enough credits to sustain its demand rates in a
long run.

From each node’s view, for any fixed p, it can afford its
demand rates in a long run if and only if it earns at least
as many credits as it consumes. Because the total number of
credits is a constant, when a node’s long run income of credits
is larger than its expenditure, it absorbs credits. Eventually,
other nodes will not have any credit to circulate. Therefore, in
order to make all nodes’ traffic rates affordable in a long run,
each node’s earning rate of credits must equal its expenditure
rate. Mathematically, the pricing problem is to find a price



vector p > 0 such that the following balancing equations are
satisfied.

N
pidi =Y pid;i VieN. (1)

Jj=1
Let D = {d;; : i,j € N'} be an N x N demand rate matrix.
Let D = {dij : i,j € N} as the rate balancing matrix,
where d;; = —d; if i = j and d;; = d;; otherwise. The

balancing equations (1) is equivalent to the following matrix
form equation.

p'D =0". )
where
—dy  dya din
doy  —do don

D = D — diag(d) =

dn1 dn2 —dn
C. The Price Solutions and Characteristics

Obviously, if we allow p = 0, it is a solution of the pricing
problem. This solution means that nodes do not charge any
credit for forwarding packets. Consequently, no enforcement
is placed on nodes, and nodes have no incentives to forward
packets.

Notice that the balancing matrix D has two properties. First,
every non-diagonal entry is non-negative, e.g. Jij >0V(i#
7). Second, each row of D has a zero sum. These qualifies D to
be a rate transition matrix for some continuous Markov chain.
Therefore, we can characterize the solution p by exploiting
the property of the conceptual Markov chain represented by
D.

1) Irreducibility:

Theorem /: If the conceptual Markov chain represented
by D is irreducible, there exists a unique unit vector v, such
that any price solution p > 0 is in the form of p = kv for
some k > 0.

The irreducibility of D implies that each pair of nodes have
direct or indirect forwarding demand on each other. The above
theorem also generalizes the first observation in the motivating
example, which shows that only price ratios determine the
price solution.

2) Reducible Cases: In reality, D may not be irreducible.
Let us discuss the implications and the price solutions when
D is not irreducible.

In the first case, D may consist several irreducible sub-
groups. Nodes within a subgroup can communicate with each
other, but cannot communicate with nodes outside the sub-
group. A typical example consists two irreducible subgroups.
We can always relabel the nodes and construct the D as

follows. D 0
oo 1
o=( % )

From the above D matrix, we can see that nodes in 1D; cannot
communicate with nodes in Ds. Physically, nodes between

different subgroups have no forwarding demand on each other.
Therefore, we can consider the pricing problems on each
irreducible subgroup independently.

In the second case, the communication between some pairs
(or subgroups) of nodes is uni-directional. A typical example
consists two subgroup D; and D, where nodes in Dy can
communicate with nodes in D, but not vice versa. We can
label all nodes in D¢ with the smallest indices:

b ( Dy 0 )
D3 Dy

From the above D matrix, we find that nodes in D has no
transition to nodes in D5, because the upper-right sub-matrix is
a zero matrix. This implies that nodes in D3 has no forwarding
demand on nodes in D;. Thus, no virtual credit will go to
nodes in Dy from nodes in D,. However, since the matrix
D3 > 0, there is positive forwarding demand from D; to Ds.
In order to have the virtual credits balanced in a steady state,
all nodes in D5 have to set their prices to be zero.

Again, it is undesirable to set a zero price for some node,
because other nodes can use the service freely and have no
incentive to provide their own services. But, a network may
have a set of edge nodes which locate at the frontier of the
network and need to send packets to other nodes. Because of
the geographical locations of the edge nodes, no other node
wants them to forward packets. We can imagine that these
edge nodes can form a set D; in the above example. For
mathematical tractability, we may need to set zero prices for
nodes which are used by the edge nodes. However, this might
be unfavorable in practice. We will address this problem as
one of our future work.

3) Price Ratio and Workload: As seen in the the motivating
example, the price ratio relates to the workload done by each
node. Let us see how the workload affects the price ratios in
the price solution using the following example. Suppose we
have three nodes with two sets of demands and according price
solutions shown in Figure 2. The demand of node 1 equals 1
and 3 accordingly in both scenarios. We normalize ps = 1 for
the ease to compare both price solutions.
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Fig. 2. price ratio and workload comparison

We observe that when node 1 increases its demand rate, the
price ratio between node 2 and 3 changes from py : p3 =1: 2
to 1 : 4. An intuitive reason is that node 2 forwards more traffic
so that it has to charge relatively less to balance the credits.
If a node 7 only request one node, say node j, to forward
traffic (e.g. node 1 and 2 in the example), from the balancing
equation we have

_Pi

_ d:
d; = pidj; = — =11,
pia; Djagjq dji i



d; can be regarded as the workload done by node i for other
nodes to forward packets. d;; can be regarded as the workload
done for node ¢ by other nodes. Thus, the price ratio equals
the inverse of workload ratio. Generally, each node’s workload
equals (derived from Equation 1):

=1 Pi

We can think of one node’s workload d; as a weighted sum
of the workload done by other nodes, where the weights are
the price ratios.

D. Distributed Price Control and Convergence

Theoretically, we can obtain a price solution p by knowing
the balancing matrix D. In practice, the global information D
may not be available to all nodes. We propose a distributed
pricing algorithm for each node based on their local informa-
tion. We prove that this distributed algorithm converges to a
price solution p such that Equation (2) satisfies.

For each node, the essence of the price control algorithm
is to set a price so that the node’s earning of credits balances
its expenditure. Let us denote p;(t) as the price of node ¢ to
forward a packet at time ¢. Similar to Equation (1), each node
1 updates its price as follows:

> pi(t)ds )

N
Jj=1 j:dji>0

Operationally, the right hand side equals the rate of credits
node 4 spent at time ¢. Node 4 adjust its price at time t + §t
such that its future earning rate equals the expenditure rate at
time ¢. In a matrix form, the prices evolves as follows:

p(t + 6t)" diag(d) = p(t)" D
<= [p(t +6t)" — p(t)"]diag(d) = p(t)" D

Suppose nodes can continuously change their prices. When 4§t
tends to zero, the following autonomous system describes the
evolution of the prices.

p”diag(d) = p"D 4)

Theorem 2: The autonomous system p” diag(d) = p’D
converges to the solution set M = {p | pI' D = 07}.

III. INCENTIVE PROPERTIES AND BEHAVIORS

In the previous section, nodes decide their prices {p;}
distributively and adaptively by equalizing the earnings and
the expenditures in virtual credits. In this section, we exploit
the effects of nodes’ misbehavior, which may be conducted
by nodes to improve their own performance. We show that
misbehaviors can either be irrational for nodes to conduct or
be harmless.

Throughout this section, we consider the following setting
of an experiment. We consider five nodes. Each node initiates
a traffic flow which needs to go through two of other nodes.

These five lowsare 1 -2 —-3,2—-3—4,3 -2 —35
,4—=5 —1and 5 — 1 — 2. The corresponding traffic
demand rates are 200, 300,250, 100 and 150 Kbps. Initially,
each node has 10000 virtual credits and sets its price to be 1
credit/Kb. Each node updates its price by every random period
of time which is uniformly distributed with mean 10 seconds.
Figure 3 shows the price, the number of credits and the average
throughput of each node. We find that the price converges
around 1 minute. After that, the number of credits for each
node is also stabilized. Each node achieves the traffic rate
they demand.

A. Price Effect

In Section II, we assume that each node ¢ updates its price
according to Equation (3). One intuitive misbehavior is that
one node may set a higher price and stick to it, hoping that it
can obtain more virtual credits and discourage traffic demands
from other nodes (because they cannot afford it).

We assume that one of the nodes (i.e. node 4) doubles its
price at time 200 (sec.) and keeps using this price afterward.
Figure 4 shows that after node 4 doubles its price, all other
nodes adaptively changes their prices and reach new stable
prices. Although node 4 obtains more credits temporarily, all
nodes achieve the traffic rate that they demand.

We find that during the price change, the node that increases
price obtains more credits. Next, we assume that each node
initially only have 1000 credits. Let us see how the price
change affects the performance of the nodes. From Figure 5,
we find that node 4 absorb all credits. But surprisingly, all
other nodes’ throughput are only affected temporarily. Because
when all nodes reach a stable state, their credits are balanced.
Therefore, although one node may not have many credits, it
obtains the traffic rate it needs.

B. Dropping Effect

In our budget-balanced credit system, each node has the in-
centive to forward packets for other nodes. Only by forwarding
other nodes’ packets could one node obtain enough credits to
sustain its own traffic demand rate.

In the following experiment, node 4 starts dropping half of
the packets going through it at time 200 (sec.). From Figure
6, we find that node 2’s throughput drops at time 200 (sec.).
This is because node 4 is the last hop of its traffic. In return,
node 2 starts accumulating node 4’s credits at that time. After
node 4 depletes all its credits, its throughput drops. Because
it does not have enough credits to afford its original traffic
rate. We conclude that rational nodes that want to obtain their
traffic demand rates will not drop other nodes’ packets.

IV. RELATED WORK AND FUTURE WORK
A. Related Work

Distributed and autonomous computer and communication
systems need incentive mechanisms in nature, i.e. differenti-
ated scheduling [11] and P2P file sharing systems [13]. In par-
ticular, mobile ad-hoc networks need an incentive mechanism
to encourage node to forward data packets for other nodes. In
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general, an incentive mechanism encourages users to provide for user demands in order to maximize profits. More delicate

services by rewarding either monetary or non-monetary credits
which they can use later in order to obtain services from the
network.

For monetary mechanisms, the central problem is how to
price the services provided by each node. As proposed in
[7], multiple nodes, which provide the same service, compete

mechanisms use the idea of Vickrey-Clarke-Groves (VCG)
mechanism [20], [2], where users bid for the services they
want. VCG mechanism has the property that the best strategy
for a user is to reveal the true value that they are willing to
pay for the services.

One general discussion about incentive mechanisms for



MANETS can be found in [9], which categorizes non-monetary
mechanisms into virtual credit systems (or token based sys-
tems) and reputation systems (trust management systems).

Proposed virtual credit mechanisms [21], [6], [5], [10], [17]
are often locally budget-balanced, where one node receives the
same amount of credits as the other node pays. But none of
them considers a globally budget-balanced mechanism where
total amount of credits in the system is stable. Thus, the credit
levels of nodes may not be stable and nodes cannot obtain
services when spending all virtual credits. In [10], the authors
proposed a self-recharging mechanism. Consequently, nodes
do not have incentives to provide services, because they can
obtain new credits during the recharge processes.

Reputation systems also attract much attention in P2P sys-
tems [16], [4] as well as in wireless networks [14]. E-bay and
Amazon are two real-world reputation systems where users
choose their auctions based on the sellers’ reputation ratings.
Compared with virtual credit systems, reputation systems
are more qualitative rather than quantitative. Although the
reputation ratings are given by third-party users, reputation
systems can also be vulnerable to false accusations or false
praise.

B. Future Work

Theoretically, we will consider the case where the demand
relationship is not irreducible. Physically, this happens to edge
nodes, which do not have much traffic routed through them,
therefore, do not have many incoming credits.

Practically, we will also consider how to securely implement
the system so that nodes cannot cheat on their credits. How
to use multi-path routing protocols to choose ‘“affordable”
routes for our virtual credit system is an another practical
consideration.
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V. APPENDIX
Proof of Theorem 1: D represents a continuous time Markov
chain with finite state. Therefore, it is ergodic, and has a
unique steady state distribution v, which satisfies
vID =0".
Consequently, any p = kv for some k > 0 satisfies
pT[) =07,

On the other hand, if there exist a price solution p = kw for
some k& > 0 and some unit vector w # v, then w must also be
a steady state distribution of the Markov chain. But the unique
steady state distribution is v. Here, we have a contradiction. B

Proof of Theorem 2: Let us define a Lyapunov function as
follows:

V(p)=p"DD"p.
Let us define M = {p | V(p) = 0}. Because
V(p) =2D"p=0<=p’'D=0"

We know M = {p | V(p) =0} ={p |_pTD = 07} Let
us also define the vector d = (1/dy,1/ds,...,1/dN). The

autonomous system is equivalent to:

p’ =p' D diag(d)



Let us evaluate V (p) using the above equation.
V(p) = p"DD"p+p"DD"p
p’D diag(a)DDTp +pTDDT diag(a)DTp
p” D|diag(d)D + DT diag(d)| D" p
p” D|diag(d)D — I + D" diag(d) — I)DTp

Because diag(d)D can be regarded as a stochastic matrix
whose row sum equals 1. By Perron-Frobenius[8] theorem,
its all eigenvalues are less than or equal to 1. Thus, both
diag(d)D — I and DTdiag(d) — I has eigenvalues less
than or equal to 0. As a result, the matrix diag(a)D —
I + D" diag(d) — I is semi-negative definite, and therefore,
V(p) <0.

Finally, by LeSalle’s [12] theorem, every initial p converges
to the set M = {p | V(p) =0} = {p | p”D = 07}. |



