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Abstract

Peer-to-peer (P2P) networks exist on the Internet today
as a popular means of data distribution. However, conven-
tional uses of P2P networking involve distributing stored
files for use after the entire file has been downloaded. In
this work, we investigate whether P2P networking can be
used to provide real-time playback capabilities for stored
media. For real-time playback, users should be able to start
playback immediately, or almost immediately, after request-
ing the media and have uninterrupted playback during the
download. To achieve this goal, it is critical to efficiently
schedule the order in which pieces of the desired media
are downloaded. Simply downloading pieces in sequential
(earliest-first) order is prone to bottlenecks. Consequently
we propose a hybrid of earliest-first and rarest-first schedul-
ing - ensuring high piece diversity while at the same time
prioritizing pieces needed to maintain uninterrupted play-
back. We consider an approach to peer-assisted streaming
that is based on BitTorrent. In particular, we show that dy-
namic adjustment of the probabilities of earliest-first and
rarest-first strategies along with utilization of coding tech-
niques promoting higher data diversity, can offer noticeable
improvements for real-time playback.

1. Introduction

In a peer-to-peer (P2P) network, there is no clear distinc-
tion between client and server nodes. In fact, every node (or
peer) on the network that requires resources from the net-
work also contributes resources to the network. This coop-
erative arrangement means that as more peers enter the net-
work, more resources such as CPU, storage, and bandwidth
become available for other peers. Using this scheme, P2P
networks provide superior resilience and scalability when
compared to classic client-server networks. In recent years,
existing P2P networks have been typically used to distribute
stored media. “Stored media” refers to content that has been

previously recorded and encoded. Apple’s iTunes Music
Store (ITMS) [15] serves as an example of a centralized
stored media system. In this example, content is available
in its entirety and is stored on a central server on the net-
work. However, existing P2P networks such as Kazaa [1],
eDonkey/eMule [11], and BitTorrent [9] are not capable of
allowing recipients to playback the stored media until the
entire file has been downloaded.

With real-time playback, users can start playback im-
mediately or almost immediately after requesting the me-
dia content. Pieces which form the media content file are
constantly being downloaded as the media content is be-
ing played. If the playback reaches a point where the piece
has not been downloaded yet, it must stop and wait for the
piece to be downloaded. For media streaming which pro-
vides real-time playback, there are generally two different
kinds: live media streaming and stored media streaming
[25]. A network such as CoolStreaming and Pplive de-
scribed in [28], [2] offers live media streaming. It is well
suited for distributing or broadcasting live content such as
live sporting events or live news reports. In this scenario,
all participating users are interested in the same (most re-
cent available) portion of the media content because they
are all watching the same point of the live content. There-
fore, the download scheduling of the content file pieces is
simple for live media streaming. The network is generally
distributing the most current piece to all the users. In this
situation, most peers should be trading the same pieces.

On the other hand, stored media streaming is previously
recorded media that is immediately available for real-time
playback. With stored media streaming each user can be
watching different parts of the stream at any arbitrary mo-
ment unlike live media streaming. Also, since the media is
prerecorded, users can get a later part of the stream into their
buffers in advance before it is needed so that their stream
will not stop in the middle. Thus, the specific pieces of the
media content a given user will currently have, or need, at
any given point in time will likely be different than that of
any other user. During playback, remaining portions of the



content are located on the network and downloaded. The re-
sulting user experience is similar to TiVo [3], where stored
media is available for playback immediately upon request.

In this work, we explore through simulation whether
P2P networking technology can be used to provide real-
time playback capabilities for stored media. Specifically,
we adopt a currently very popular and prototypical P2P net-
work called BitTorrent [9] as P2P system environment for
our entire simulations. Therefore, the overall P2P network
mechanism and all the behaviors of each peer in our simula-
tor are basically the same as those in the current BitTorrent
system except for the download scheduling strategy.

In a BitTorrent network, a peer uses a combination of
Local Rarest First (LRF) policy and a random scheme [6],
[20] for the download scheduling strategy to both ensure a
uniform dissemination of file pieces and prevent peers from
waiting too long to find the last missing pieces. However,
this is adequate only for distributing a complete file first be-
cause all parts of a file need to be obtained before it can
be played. The download scheduling strategy of BitTor-
rent aims only to minimize the amount of time it takes for
peers to get the complete file, and this strategy fails to em-
phasize the need to have the earlier pieces before the later
pieces. As a result, the network may use its resources to
download later pieces when the playback is interrupted be-
cause an earlier piece is not available. On the other hand, in
order to support real-time or uninterrupted playback, peers
may choose to use earliest-first, which favors downloading
the earlier parts of a file first. However, this strategy may
neglect exceptionally rare pieces on the network and result
in bottlenecks later in the download process.

To solve these piece selection or download scheduling
problems, this paper makes the following contributions:

1. We propose a probabilistic hybrid strategy of earliest-
first and rarest-first. Instead of using earliest-first or
rarest-first by itself, whenever a peer selects the next
piece to download, with probability p it chooses a
piece using earliest-first strategy. Otherwise (with
1 — p), it chooses a piece using rarest-first strategy.
This hybrid strategy enables us to take advantage of
both of each piece download strategy. It combines the
real-time playback capabilities of earliest-first with the
advantages of using a BitTorrent-like network (rarest-
first). We show in Section 4.1 and 4.2 that by ef-
fectively maintaining the balance between earliest-first
and rarest-first our proposed hybrid strategy outper-
forms pure earliest-first or rarest-first strategy in terms
of playback continuity.

2. We investigate dynamic adjustment of the probabili-
ties of earliest-first and rarest-first by implementing
a contiguous index which is the number of continu-
ous pieces downloaded and buffered by a peer start-

ing from the peer’s current playback position in the
playback sequence (Section 4.3). If the contiguous in-
dex decreases, then we will increase the probability of
earliest-first downloads (p). This allows the peer to ag-
gressively increase the pieces that are needed sooner.
However, if the contiguous index increases, then we
can increase the percentage of rarest-first downloads.
This helps rare pieces propagate through the network
therefore increasing the overall performance of the net-
work. We show that instead of fixing p, by having
each peer adjust its own p dynamically according to
the contiguous index, we can improve the streaming
performance.

3. In Section 5, we attempt more in-depth investigations
such as coding techniques which offer more content
data diversity to a network causing high utilization of
the network by allowing all the peers in the network
to encode and transmit data pieces [13], [14], [12],
[8]. Those coding schemes make the probability of du-
plication of transmitted data to the network extremely
low. With coding, each peer XOR’s all or subset of
the data pieces it has and exchanges the resulting code-
word with its neighbors. We show that coding provides
higher content data diversity than rarest-first strategy
does, contributing to the higher network utilization.

4. We investigate improvements on the playback continu-
ity performance in Section 6 by varying the values of
key parameters of our simulator such as the number of
seeds, aggregate seed bandwidth, seed leaving rate, the
number of neighbors, and so on. We also confirm that
our proposed download strategies perform the best in
those diversified scenarios.

In this paper, we show that it is feasible to provide a real-
time streaming service of stored media by using the cur-
rently available P2P systems such as BitTorrent with modi-
fications to the download scheduling mechanisms.

2 Related Work

During the last years, there have been a number of
studies in the area of P2P multimedia streaming based on
BitTorrent-like content distribution systems [28], [26], [29],
[24], [10], [27]. Among them BiToS [26] and Zhou et al.
[29] are closely related to our work in that they suggest
modifications to piece selection strategies of the original
BitTorrent systems (rarest-first) to support streaming capa-
bilities. In [26], the buffer for downloading pieces is di-
vided into two sets, high priority set and remaining pieces
set (lower priority set), and in the piece selection process the
peers choose to download a piece from the high priority set



with probability p and download a piece from the low prior-
ity set with 1 — p. Similarly, [29] suggests Greedy Strategy
where peers select a piece which is closest to its playback
deadline, Rarest First Strategy, and Mixed Strategy, which
is a combination of Rarest First and Greedy.

However, both [26] and [29] deal with live media stream-
ing while we explore stored media streaming. In a live me-
dia streaming scenario, only a few pieces are available for
sharing in the few seconds of the playback buffer, and future
pieces are not available. On the other hand, for stored media
streaming, all the pieces of the content file being streamed
are available. Therefore, the piece selection strategies in
[26], [29] need to focus limited sets of the pieces using a
small sliding time window from which peers select to down-
load a piece whereas our strategy needs to consider the en-
tire file.

Furthermore, all the peers have a synchronized playback
deadline in live media streaming, and a newly arriving peer
with an empty buffer therefore also starts to play back the
same piece as existing peers do. In this scenario, pieces
played back in the previous time are usually removed as
they are useless. However, since peers do not need to syn-
chronize their viewing times in our work, peers keep the
pieces even after their scheduled playback deadline so that
they can share those pieces for other peers including newly
joining peers.

Recent work to provide stored media or Video-on-
Demand streaming service is BASS [10] and RedCarpet
[21], [4]. BASS presents a hybrid system approach of a
streaming server and a BitTorrent-based P2P system. In
BASS, all the peers are connected to the dedicated server
downloading pieces from it in the meantime they share
the pieces using the BitTorrent network to help each other
and supplement the server-based streaming. BASS shows
that the reductions in the server-side load can be achieved
with the BitTorrent approach. However, in our work, peers
use only P2P network to download the pieces without the
server/client relationship. For our work, it is more required
to investigate the effectiveness of various piece propagation
or download strategies among the peers.

In RedCarpet, the stored media file is divided into seg-
ments, each segment comprising consecutive pieces. The
authors apply random, local-rarest, and sequential down-
load policies to choosing a piece from the target segment
(each segment is picked sequentially). On the other hand,
we propose download strategies in which any of the pieces
of the file needed by a peer may be downloaded any time
they are available. RedCarpet also adopts network coding
to improve the network throughput and playback rate. How-
ever, their coding schemes differ from ours. In their work,
the initial server linearly combines all the pieces of the file
with random coefficients to create an encoded codeword,
and they modify the scheme restricting coding to only a

given segment of the file since otherwise, a peer has to wait
until it downloads the whole file before it can start decod-
ing. In our approach we consider all the pieces of the file but
still ensure fast encoding and decoding time at each peer by
introducing a degree distribution that indicates the probabil-
ity distribution over the number of the original data pieces
encoded in a codeword. Given degree d, only d randomly
chosen pieces form a codeword, and peers can immediately
recover data from low degree codewords.

3 Implementation

We use a simulation-based approach for measuring and
understanding stored media streaming performance. Such
an approach provides the flexibility of carefully control-
ling the configuration parameters of the various streaming
mechanisms. We modify a time-based BitTorrent simulator
previously developed at Carnegie Mellon University called
OctoSim [6], [5].

3.1 Download Scheduling Strategies

We are interested in three different scheduling strategies.
BitTorrent uses a combination of rarest-first and random se-
lection to achieve a low download time. Live media stream-
ing applications such as CoolStreaming download the piece
that is most current. In order to minimize interruptions in
real-time playback, we will explore different combinations
of the following three strategies.

o Earliest-first scheduling: Earliest-first prioritizes the
download of pieces by their position in a media file.
A piece earlier in the playback sequence will have a
higher priority than a piece that appears later in the
playback sequence. Earliest-first appears to be a nat-
ural strategy for real-time feedback because earlier
pieces are needed before later pieces. However, there
may be some problems with strategy that are not im-
mediately obvious. In this scheme, the network may
not propagate an exceptionally rare piece. Therefore,
every peer that needs the rare piece will encounter a
bottleneck because they will struggle to find a peer that
has it.

o Rarest-first scheduling: Rarest-first prioritizes the
download of pieces by their rarity in the network.
In the BitTorrent implementation, local rarest-first is
used. Peers in the network are grouped into a smaller,
logical neighborhoods. When a peer requests a piece
from its neighbor, the neighbor will offer the rarest
piece in the network that it has. We follow this im-
plementation of rarest-first. However, this does not
work well in streaming applications because a user



needs immediate access to the beginning of the me-
dia file. The obvious problem with this strategy is that
resources may be allocated to download later pieces
when the playback is waiting for an earlier piece.

e Random-selection scheduling: Random-selection is
a download strategy that can be used when there is
no available information to use for alternative strate-
gies. For instance, BitTorrent peers initially start with
random-selection because information about the rarest
pieces may not be available. We will investigate the
performance of random-selection in combination with
the other download strategies.

3.2 Simulation Details

OctoSim is a discrete-event simulator. It models peer
activity (joins, leaves, neighbor selection, piece exchanges,
etc.) as well as many of the associated BitTorrent mecha-
nisms (local rarest-first, tit-for-tat, etc.) in detail [6]. How-
ever, this simulator was developed to simulate the distribu-
tion of non-streaming content. Therefore, we modify the
simulator to control the scheduling and download progress
of the streaming file, such as which piece of the file should
be downloaded at what point in time. This allows us to de-
termine the most effective heuristic for obtaining the neces-
sary pieces of a file that allows uninterrupted playback us-
ing combinations of earliest-first, rarest-first, and random-
selection schemes.

Downloading peers, or leechers join the network at the
arrival rate A (peers/second) according to a Poisson distribu-
tion. They persist in the lifetime of the streaming but depart
as soon as they finish downloading. On the other hand, there
initially exists one seed defined to be a peer that has already
received a complete file and has been willing to serve it to
leechers. The initial seed stays in the network throughout
the duration of the simulation. The default streaming rate
is 400Kbps and the size of each piece of a media file is
2000Kbits (=250KBytes). Therefore, each piece contains
five seconds of the stream. Unless other values for the pa-
rameters are mentioned, we use the following default set-
tings in our simulations:

o Number of initial seeds: 1
e Leecher arrival rate (\): 0.1 peers/second
e Streaming rate of the media: 400Kbps

e File size: 90MBytes (360 pieces of 250KB
(=2000Kbits) each, which corresponds to 30 minute
length playback)

e Seed uplink bandwidth: 800Kbps
e Leecher downlink/uplink bandwidth: 1600/800Kbps

e Number of neighbors of each peer (degree, d): 10

e Maximum number of concurrent upload transfers of
each peer: 5

e Each leecher departs the network as soon as it com-
pletes downloading.

e Leechers are independent and homogeneous following
the same download scheduling strategy.

e All the behaviors of each peer (including piece infor-
mation collection and neighbor selection for piece ex-
changes) are the same as those used in the current Bit-
Torrent system [9] except for the download scheduling
strategy.

e Number of peers that we collect and average data from:
200 peers

e All simulations average the results of 30 runs.

With the above default settings we want to first look at
the streaming performance under quite poor conditions for
P2P real-time streaming services. We assume that there ex-
ists only one seed throughout the entire simulation period
and all the leechers leave our simulation network right after
they get the complete media file. The seed’s uplink band-
width is also relatively small compared with each leecher’s
downlink bandwidth. Thus, it is hard to provide uninter-
rupted streaming services for quickly arriving leechers with
the default settings. Once we observe results of the stream-
ing performance under this situation in Section 4, we also
diversify the simulation scenarios in Section 6 by changing
the values of the above configuration parameters to find key
parameters and corresponding values which can offer unin-
terrupted real-time playback.

3.3 Playback Continuity

We quantify the effectiveness of the stored media stream-
ing in terms of playback continuity. Maintaining continu-
ous playback is a primary objective for streaming applica-
tions to ensure a satisfactory user experience. The number
of pieces missing playback deadlines should be kept to a
minimum.

To measure our playback continuity (PC'), we first ob-
tain a given peer ¢’s actual playback time (7") taken to com-
plete the entire playback. We start to measure 7" as soon
as peer ¢ joins the network and requests the media. Note
that T" differs from the time taken to complete download-
ing and cannot be smaller than it. Second, we consider the
minimum start-up time (S, ) required for peer i to be able
to start playback after it joins the network. Each piece can
be played back when it is completely downloaded, and peer
1 can start to play back the media only after it completely
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Figure 1. Transition of the number of peers in
the network with different download schedul-
ing strategies as a function of simulation
time. (The curve named ‘EF+RF’ indicates
the hybrid strategy of earliest-first and rarest-
first, which will be explained in Section 4.1.)
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downloads the first piece of the media file. Given the orig-
inal time length of the media content (L), we define play-
back continuity as PC = (T' — Sy,,)/L. Since the min-
imum start-up time is achieved when peer ¢ requests none
other than the first piece of the file and downloads it from a
neighbor with the highest uplink bandwidth (although there
exists peer i’s downlink bandwidth constraint), we define
Sinin as follows:

v

Stmin = min{vy;, max(U)}

where v is the size of each piece, 7; is the downlink
bandwidth of peer ¢, and U is a set of all distinct uplink
bandwidths of neighboring seeds and leechers. For ex-
ample, in Section 4.1, we treat homogeneous peer band-
width (1600/800Kbps), and since the uplink bandwidth
is smaller than the downlink bandwidth and each piece
size is 250KB(=2000Kbits), we constantly has S,.,;, =
2000K bits /800K bps = 2.5seconds. In case of the hetero-
geneous environment in Section 4.2, S,,,;,, varies depending
on peer ¢’s downlink bandwidth itself as well as its neigh-
bors’ uplink bandwidths.

Since T' — S,,,;, cannot be smaller than original length
of the media (L), playback continuity is always greater than
or equal to 1. If playback continuity equals 1, it means that
users can play back the media without any interruption. A
playback continuity of 2 indicates that a user spends twice
as much time as L finishing playback due to frequent inter-
ruption.

4 Probabilistic Hybrid Strategies

We first investigate streaming performance applying the
three download scheduling strategies introduced in Section

Playback continuity

0
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Figure 2. Average playback continuity and
download time of the peers when each of the
three different scheduling schemes works
alone. ‘lambda’ indicates each peer’s arrival
rate (per second) to the P2P network.

3.1. Figure 1 graphs the transition of the number of peers
in the network as a function of simulation time - when each
of the three different scheduling schemes is applied in iso-
lation. We can see that in the beginning of each simulation
the number of peers in the network keeps growing. This
is because no peer has downloaded the entire file yet (and
therefore are unable to depart from the network) but new
peers are continually arriving at rate A = 0.1. As simula-
tion time goes by, peers begin to complete their downloads
and leave the network. As a result, the size of the network
stops growing and then decreases drastically until most of
those initially arriving peers have left the network. After
this point, regardless of download scheduling strategies, the
number of peers gradually stabilizes to an point even though
there are still small fluctuations on the curves. We observed,
through several experiments with different values of A, that
the stabilized point depends on A\ and the point almost lin-
early goes up as A\ increases.

Based upon these findings, we first investigate the per-
formance of peers that join the network after the size of the
network has stabilized. (We will subsequently examine the
behavior of the early arriving peers in Section 4.1 and 4.2.)
In figure 2(a) we plot the average playback continuity of
200 homogeneous (with respect to bandwidth) peers across
an increasing value for A. We select those 200 peers sequen-
tially after a sufficiently large number of peers (2500 peers)
in the P2P network have obtained the complete file. In other
words we collect from the 2501st to 2700th peers to finish
downloading.

In the figure, there are three sets of bars that represent
the earliest-first, rarest-first, and random-selection down-
load strategies. We can see that earliest-first offers the great-
est degree of continuous playback. This fits our expec-
tations that giving earlier pieces higher priority will mini-
mize breaks in continuity. We note that both rarest-first and
random-selection offer equally poor performance with re-
spect to this measure. However, as can be seen from figure



2(b), in terms of the average download time it takes for a
peer to download the entire media, rarest-first performs the
best by a significant margin, followed by random-selection,
with earliest-first exhibiting the worst performance. It is not
surprising that rarest-first offers the best download times, as
it is the primary strategy implemented by BitTorrent.

These results show that while the system utilization of
pure rarest-first is high, the playback continuity is quite
low, due to out-of-order delivery of the pieces of the file.
On the other hand, we believe that a pure earliest-first strat-
egy is too aggressive in seeking the earliest pieces, to meet
the needs of the individual peers. Earliest-first neglects the
needs of the overall network and fails to propagate latter
pieces that are needed by neighbor peers. We additionally
observe that both playback continuity and download times
remain almost unchanged, despite increases in A\. We exam-
ine the relationship between A and playback continuity in
Section 4.1 and 4.2. The following analysis is based upon
those findings.

4.1 Homogeneous Setting

Instead of using each download scheduling strategy
alone, we propose to use all the three download schemes
at the same time but change the percentage or probability of
each scheme and see which combination is optimal in terms
of the playback continuity. After several experiments we
concluded that the combination of earliest-first and rarest-
first schemes offers the best performance in terms of the
playback continuity. The inclusion of random-selection al-
ways decreased the performance of a hybrid scheduling
strategy.

Based on the previous experiment, we considered a ho-
mogeneous setting in which all leechers have the same
bandwidth (1600/800Kbps as noted in Section 3.2). We plot
the playback continuity and the system utilization (uplink
bandwidth utilization of the entire system) using a proba-
bilistic hybrid strategy of earliest-first and rarest-first (see
figure 3). With the probabilistic hybrid strategy, when a
peer chooses the next piece to download, it chooses a piece
using earliest-first strategy with probability p and chooses a
piece using rarest-first strategy with 1 — p. In other words,
whenever a peer has a chance to download a piece from one
of its neighbors, with probability p it requests the earliest
piece the neighbor has, and with probability 1 —p it requests
the rarest piece in its neighborhood the neighbor has.

Based on the transition curves of the number of peers in
the network (figure 1), we first define S; as the set of 200
peers that finish downloading from 2501st to 2700th and
S, as the set of the first 200 peers that finish downloading.
We expect that the two groups of peers will show different
streaming performance results. Thus, in figures 3(a) and
3(b), like in figure 2, we collect and average results from

peers in S;. On the other hand, figures 3(c) and 4(b) are
plotted from peers in S,.

In figure 3(a), we can see that as the probability of
earliest-first (p) increases, the playback continuity im-
proves. However, we notice that there is a large rise at
the right side of the curves (where the ratio of rarest-first
to earliest-first is zero). This tells us that we cannot use
only earliest-first because even small percentage of rarest-
first contributes to much better playback continuity. We
note that the hybrid strategy enables nearly uninterrupted
playback where p is around 0.8 ~ 0.9.

This result can be explained from figure 3(b). The uti-
lization indicates the amount of uplink bandwidth actually
used to transmit data during the whole simulation period
over the total aggregate uplink bandwidth in the system.
The utilization can be also considered as bandwidth effi-
ciency. The figure shows that utilization drops drastically
when the probability of rarest-first is zero, which implies
that leechers are not contributing to the uplink bandwidth.
This happens because the main disadvantage of earliest-first
scheme is that the leechers have very similar pieces of the
content file and a leecher has fewer chances to provide its
pieces to its neighbors. However, we can see that the small
percentage of rarest-first (0.1 ~ 0.2) even contributes to the
fairly high utilization of the system.

This shows the trade-off between uninterrupted play-
back and the system utilization. General P2P systems
achieve high utilization when the peers can exchange con-
tent with each other and this happens only if they have non-
overlapping pieces of the content file [21]. Therefore, gen-
eral P2P systems usually direct peers to download rarest
pieces first because it enables high piece diversity among
the peers. However, in order to provide the uninterrupted
real-time playback, the peers would choose to use earliest-
first. However, If they did so, the peers would not propagate
rare pieces and would have very similar pieces, causing the
possibilities for exchanging content to become low. As a
result, the utilization of the P2P system would be low as
well.

Figures 3(c) and 3(d) show the similar trend that the hy-
brid strategy greatly outperforms pure earliest-first or rarest-
first even though the ratios of the combination for the best
playback performance are different from those in figure
3(a). However, we notice that playback continuity itself of
S, in figure 3(c) is worse than .5; in figure 3(a). In figure
3(c), we observe the first 200 peers that receive the com-
plete file, and in our simulations they are mostly the first
200 peers that arrive in the network (ignoring the cases of
much higher peer arrival rates than we use for our simula-
tions). Therefore, since there exist not many peers in the
network that can provide pieces except an initial seed when
those early peers first arrive, we note that they suffer low
upload utilization in figure 3(d) compared to that in figure
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Figure 3. Playback continuity and utilization results in the homogeneous environment when earliest-
first and rarest-first are used together. (a) and (b) plot 200 peers that finish downloading from 2501 st
to 2700th (S;) while (c) and (d) plot the first 200 finished peers (S.). The probability of rarest-first is

1— prob. of earliest-first.

3(b), resulting in the poor playback performance.

Another observation we make is that playback continu-
ity in figure 3(c) improves as A\ decreases while it remains
almost constant in figure 3(a). We believe that the improve-
ment on the performance is a result of the fact that since
peers join at a slower rate, the new peer will encounter
neighbors that have been on the network for a longer time.
These neighbors will likely have many more pieces that are
sought by the new peer. On the other hand, when A is large,
especially earliest-first shows very poor performance. This
is obvious because with large A, many peers newly arrive
within a short period and request very similar pieces from
the limited number of earlier peers which have those pieces.

4.2 Heterogeneous Setting

Next we examine a heterogeneous environment where
leecher uplink/downlink bandwidth has a wide range. Ta-
ble 1 shows the distribution of leecher bandwidth, which is
reported in [23].

Downlink | Uplink | Percentage
512Kbps | 256Kbps 56%
3Mbps 384Kbps 21%
1.5Mbps | 896Kbps 9%
20Mbps 2Mbps 3%
20Mbps SMbps 11%

Table 1. Bandwidth distribution of leechers
for a heterogeneous setting

Figure 4 shows the average playback continuity and up-
load utilization of 200 heterogeneous leechers as a function
of p. Except for the bandwidth of leechers, all other settings
are the same as those used in the homogeneous environment
discussed in the previous subsection. In this simulation, we
consider both .S; and S.. We note that the playback continu-
ity curves move up in figures 4(a) and 4(c) when compared

to the results for the homogeneous environment. This is be-
cause more than 50% of leechers have quite poor bandwidth
(512Kbps/256Kbps), while the streaming rate is 400Kbps.

We note that our hybrid strategy still outperforms either
pure earliest-first or pure rarest-first in the heterogeneous
environment. Similar to the homogeneous case, the best
playback continuity in Figure 4(a) is achieved where p is
around 0.9. As regards upload utilization of heterogeneous
leechers, we notice that there is a large drop at the right side
of the curves when the fraction of rarest-first approaches 0
- just as we see in the homogeneous case. Therefore, the
main disadvantage of pure earliest-first applies in the het-
erogeneous environment as well. In figure 4(d), we observe
that heterogeneous peers in S, still have the same low up-
link bandwidth problem as noted in Section 4.1, and as a
result, their playback performance is worse (see figure 4(c))
than that of peers in 5;.

In the rest of the paper, all simulations in the heteroge-
neous environment use the bandwidth distribution given in
Table 1.

4.3 Monitoring Contiguous Buffer

Each peer has a buffer to store later pieces of the content
file before they are needed. In the previous simulation in
Section 4.1 and 4.2, each strategy has a fixed probability of
occurring during one simulation. With heterogeneous peers
in S; and A = 0.1 peers/sec, the performance was the best
when p was fixed as 0.85 (see figure 4(a)). But now we
change p dynamically during one simulation according to
the number of pieces buffered by a peer contiguously from
its current playback position. If this number is big enough,
which denotes that the peer has many pieces contiguously
from the current playback position, then the peer will not
need to use earliest-first for a while. The peer may be more
willing to help its neighbors by using rarest-first strategy.

Therefore, instead of fixing the probabilities of earliest-
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Figure 5. The dynamic adjustment of the
probability of rarest-first according to the
number of contiguous pieces in a buffer: The
numbers next to each curve indicate play-
back continuity when the probabilities on the
corresponding curve are used. The values in
parentheses indicate Growth Codes results
which will be explained in Section 5. Het-
erogeneous peers from S; are simulated with
A=0.1.

first (p) and rarest-first (1 — p) schemes, we change p dy-
namically according to the number of the contiguous pieces
from the playback position in order to improve the playback
continuity. We define contiguous index c as the number of
contiguous pieces from the current playback position a peer
has buffered. As c increases for a given peer, then we can
decrease the probability of earliest-first(p) for the peer, and
as c gets small, we can increase p and make it even greater
than 0.85.

We plot the results of dynamic changes of p in the het-
erogeneous environment in figure 5. The x-axis indicates
the contiguous index c. Note that the number of contiguous
pieces did not really exceed 17 or 18 during our simula-

tion under A = 0.1. The y-axis is the probability of rarest-
first (1 — p). The straight line (I) is our previous best result
where p was fixed as 0.85 in the previous subsection. Now
we attempt to change the shape of this straight line I con-
sidering the basic idea that we increase the probability of
rarest-first as ¢ (x-axis) increases. The step function curve
(II) is quite an extreme case. We set probability 1 when
the number of contiguous pieces is big enough, and oth-
erwise, we maintain the original probability of rarest-first,
0.15. But even with this small modification, the playback
continuity slightly improves from 1.185 to 1.179. Then we
try concave(Ill), linear(IV), and convex(V) curves. How-
ever, the playback continuity is worse with those probability
curves showing that we should not increase the probability
of rarest-first too much when c is very small. Therefore,
we try other various curves such as (VI)~(VIII) where the
probability of rarest-first remain unchanged while c is very
small (¢ < 5 in our simulation), and they all outperform our
original best result with fixed probabilities.

These results show that dynamic adjustment of prob-
abilities of earliest-first and rarest-first is more effective
than fixed probabilities. They fit our expectation from hav-
ing more rarest-first scheme(i.e., decreasing earliest-first) as
contiguous index increases. However, as we see that only
(II) and (VI)~(VIII) offer the improvement in the playback
continuity, there are some conditions which should be sat-
isfied to guarantee a benefit. While we simulated with sev-
eral other various curves, we noticed that with very small c,
when the probability of rarest-first exceeded 0.15 which is
the ratio of rarest-first in our previous best result in figure
4(a), probability curves with any shapes did not offer better
performance. With very small ¢, we should keep the proba-
bility equal to or smaller than 0.15. On the other hand, we
can safely set probability 1 when c is large enough. How-
ever, we observed that when we kept setting probability 1
as c decreased, even though we set probability O for the rest
of ¢, the performance became worse. There was a limit to ¢
and it was 11 in our simulations. When ¢ < 11, we should
keep the probability of rarest-first below 1. With these two
conditions satisfied, probability curves in general improve



the playback continuity performance in our simulations.

5 Effect of Coding Techniques

We now consider a more in-depth investigation by imple-
menting and using coding techniques. Network coding has
been proposed by [13], [14], [8], [12] to improve data diver-
sity and the throughput of a network. With network coding,
each node or peer of the network is able to encode and trans-
mit pieces of information. The intermediate peer decodes
the encoded data pieces and recode them into another set
of pieces before it sends them out. This coding technique
significantly reduces the chance of receiving the same en-
coded piece from the network. [17] shows that the high data
diversity of coding techniques enables efficient BitTorrent’s
tit-for-tat exchanges and hence enhances fairness in the P2P
system. Also, [12] shows that network coding improves the
robustness of the system and is able to handle extreme situ-
ations where the seeds and leechers leave the system.

5.1 Coding Description

We consider low complexity erasure codes such as
Growth codes [16] and LDPC codes which include Digi-
tal Fountain codes [7] (Tornado codes [19], LT codes [18],
Raptor codes [22]). Those erasure codes which have low
computational costs for encoding and decoding resulting in
very fast encoding/decoding algorithms are practical in our
real-time playback scenarios. With coding, the peers ex-
change codewords each of which is an XOR-sum of a sub-
set of all distinct pieces in the media file. The number of the
distinct pieces which are XOR’d together is referred to as
the degree (D) of the codeword. Thus, degree 1 codewords
consist of original data itself, and the others (D > 1) com-
prise an XOR’d combination of original data. We assume
that the size of a codeword is equal to that of one piece of
the media file (250KB) even though in practice some addi-
tional header space is required to recognize the set of pieces
encoded in the codeword.([16] shows that this overhead has
a negligible impact on the results.) The codes choose the
degree of each codeword according to a pre-determined de-
gree distribution which is a probability distribution over de-
gree lengths.

In order to decode one original piece from a degree D
codeword C, a peer should have all of the other D — 1 orig-
inal pieces encoded in the codeword. We assume that in
the decoding process the peer knows which pieces are used
to generate any received codeword. To decode the miss-
ing piece Xp, the peer solves Xp = C ® X1 & Xo &
--- @ Xp_1 where Xy, .-, Xp_; are the decoded pieces
the peer should have. Each peer can perform the decoding
process on the fly as it receives a new codeword from its
neighbors, and codewords which cannot be decoded at the
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Figure 6. Playback continuity and utilization
results of S; in the heterogeneous environ-
ment when coding strategies are applied.
EF indicates earliest-first and RF rarest-first.
The arrival rate of leechers )\ is 0.2. For Ro-
bust Soliton distribution, the parameters c =
0.2 and § = 0.05 are used.

moment are stored for later use until more codewords arrive
and additional pieces are decoded.

5.2 Simulation Results

First, we substitute coding for the rarest-first part in the
hybrid strategy of the earliest-first and rarest-first schemes.
Since the earliest-first part is essential and the earliest pieces
are usually expected to be played back as soon as the
peers receive them, we do not encode the original pieces
in codewords when the earliest-first strategy part is used.
Due to the time required to decode those pieces, the peers
may frequently miss playback deadlines, resulting in a
worse playback continuity. On the other hand, using the
rarest-first strategy, peers usually exchange later pieces and
those pieces have enough time until the playback deadlines.
Therefore, those pieces can be encoded. With our coding
strategies, instead of a peer’s requesting a rarest piece to its
neighbors, the peer requests a codeword in which the rarest
pieces are encoded. The number of rare pieces that will be
encoded in a codeword depends on the pre-determined de-
gree distribution based on the codes. If multiple pieces have
the same rarity in the neighborhood and taking all of them
to generate the codeword exceeds the given degree, then the
peer should pick a part of them uniformly at random. We
use the degree distribution of Growth code and Robust Soli-
ton distribution of LT codes.

Since we use coding, we can add more variety to
the information exchanged between peers, leading to high
throughput. Moreover, a peer has more options for an ear-
liest piece. Without coding, a peer has to request the ear-
liest piece which its neighbor has. However, with coding,
even though the neighbors do not have the earliest piece
which the peer needs, if it has a codeword in which the ear-
liest piece is encoded, then it can get the piece indirectly



by receiving the other pieces in the codeword and decod-
ing the desired piece from the codeword. In figure 6(a), we
plot playback continuity of S; in the heterogeneous envi-
ronment versus the mixing probability p for the download-
ing strategies derived when using the degree distribution of
Growth Codes and Robust Soliton of LT codes. The EF+RF
curve replicates our previous non-coding results of the hy-
brid strategy in figure 4(a). With our coding strategies, in-
stead of rarest-first, the probability of encoding the original
pieces at a peer and transmitting the resulting codeword is
1 —p. We can see that the both coding strategies outperform
the non-coding scheme and they can improve the best play-
back continuity of the non-coding strategy around p = 0.9.
Also, figure 6(b) confirms our expectation that the coding
strategies contribute to higher system throughput.

We also apply dynamic adjustment of probability of
earliest-first p to our coding strategies in the same manner
as in Section 4.3. Instead of fixing p, a peer increases the
probability of earliest-first as contiguous index c decreases,
and it increases the probability of coding as c increases. In
figure 5, the y-axis, the probability of rarest-first (1 —p) here
indicates the probability of using coding strategies, and the
values in the parentheses indicates playback continuity re-
sults given by the Growth coding strategy. Similar to non-
coding strategy, dynamic adjustment of the probabilities of
earliest-first and coding also works more effectively than
fixed probabilities.

6 Diversified Simulation Scenarios

The default settings for the previous simulations repre-
sent quite a poor circumstance where there is only one ini-
tial seed and all the leechers leave the network right after
they get the complete file without serving as a seed. Also,
the initial seed bandwidth (800Kbps) is relatively small and
not sufficient to keep the downlink bandwidth of the leech-
ers fully utilized, resulting in the low network utilization. In
this section, we investigate improvements in the streaming
performance possible by changing the values of key param-
eters of our simulator such as the number of seeds, aggre-
gate bandwidth of seeds, seed leaving rate, and the num-
ber of neighbors. Especially, we focus on heterogeneous
peers from set S, since their streaming performance was
the worst (figure 4(c)). At the same time, we confirm that
our proposed strategies perform the best in those diversified
scenarios.

6.1 Bandwidths of Seeds and Seed Leav-
ing Rates

We examine the effect of bandwidths of seeds on the
playback continuity performance considering the cases of
having a single seed and having multiple independent seeds.
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Figure 7. Comparison between a single seed

and multiple seeds as aggregate seed uplink

bandwidth varies.

1

Since all leechers leave the network right after they finish
downloading without becoming a seed, here seeds indicate
initially existing seeds which stay in the network through-
out the entire simulation. Figure 7 shows playback conti-
nuity results of both non-coding and coding strategies as
the bandwidths of seeds varies from 400Kbps to 3200Kbps.
If there is a single seed, all the seed bandwidth belongs to
the single seed, otherwise, the bandwidth indicates aggre-
gate bandwidth of multiple seeds. Leechers are heteroge-
neous, and we focus on S,. The probability of earliest-first
(p) is fixed as 0.8 for both EF+RF and EF+GrowthCodes
strategies. The results show how valuable the seed band-
width is for the streaming performance whether there is a
single seed or are multiple seeds. Also, we can see that
our hybrid strategy and coding strategies still greatly outper-
form pure earliest-first or rarest-first as the seed bandwidth
varies. EF+RF(multi) achieves the playback continuity be-
low 1.2 when 2 seeds (1600Kbps) exist in the network while
EF(multi) needs 4 seeds (3200Kbps).
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Figure 8. Impact of varying the seed leav-
ing rate (in seeds/second). The proba-
bility of earliest-first(p) is 0.8 for EF+RF,
EF+GrowthCodes, and EF+RobustSoliton.

When the aggregate bandwidth across all seeds is large,



multiple seeds are more effective than a single seed due to
the limitation on the number of concurrent uploads per seed
(the limit is 5 in our simulation). Even if a seed has a large
bandwidth available, the limit on the number of concurrent
uploads can cause some of the available bandwidth to go
unused. When the available aggregate bandwidth is small,
this limit on the number of uploads per seed does not come
into play since the load offered by the 5 concurrent upload
sessions uses all the available bandwidth, even for a single
seed. In this case, the playback continuity suffers more in
the case of multiple seeds because the independent multiple
seeds serve duplicate pieces being served by the other seeds
wasting their bandwidth. We find that during the rarest-first
periods almost 30% of the pieces are served duplicately by
different seeds even before one full copy of the file has been
served to the network.

We also investigate the cases where each leecher stays
for a given average time in the network serving as a seed
after it completes downloading. In figure 8, we plot the
playback continuity of different download strategies as the
seed leaving rate is varied. Here one initial seed stays and
keeps serving, and only the other non-initial seeds which
used to be leechers formerly leave according to the seed
leaving rate. The seed leaving rate (in seeds/second) fol-
lows the exponential distribution, and the average stay time
after each leecher becomes a seed is therefore one over the
seed leaving rate. In the figure, as the rate decreases, the
playback continuity of all the strategies improves substan-
tially, and we can achieve almost perfect real-time playback
with the leaving rate O where no seeds leave the network.

6.2 Peer Degree

Next we study whether playback continuity improves
with increases in peer degree, d, which denotes the aver-
age number of a peer’s local neighbors. Figure 9(a) shows
that playback continuity performance of peers from S, in
the heterogeneous environment generally improves mod-
estly as the degree increases. When the degree is small,
for instance, when d = 5, a leecher has a very restricted
local view in its neighborhood [6]. Therefore, rarest-first
scheduling scheme is not effective in evening out the distri-
bution of pieces at a global level and causes poor playback
continuity. However, when the degree is moderately high,
rarest-first ensures greater diversity in the set of pieces held
in the system [6] and it also contributes to playback continu-
ity. Since the maximum number of concurrent uploads per
peer is limited to 5, the performance is relatively insensitive
to very high degree (d > 20).
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Figure 9. (a) The playback continuity as a
function of average number of neighbors (d).
(b) The playback continuity of EF+RF strat-
egy as the media file’s size varies from 360
to 1440 pieces, which corresponds to from
0.5 to 2 hour length media. (In (a), the prob-
ability of earliest-first(p) is 0.8 for EF+RF,
EF+GrowthCodes, and EF+RobustSoliton.)

6.3 Number of Pieces

The intention of this subsection is to measure how scal-
ably our download strategies perform by changing the num-
ber of the total pieces of the media file. Figure 9(b)
shows the scalability of our probabilistic hybrid strategy
of earliest-first and rarest-first with media file sizes up to
2 hours in length. We plot playback results from two dif-
ferent groups of peers: homogeneous and heterogeneous
peers. The upper four curves in the figure correspond to
heterogeneous peers, and the lower four curves, homoge-
neous, - all peers considered belong to \S;. In the figure, the
overall shapes of each curve are similar to each other show-
ing that the hybrid strategy outperforms pure earliest-first or
rarest-first scheme. The best playback continuity results are
well maintained close to those obtained when the default
number of pieces (360) is used. Similarly, with our cod-



ing strategies replacing rarest-first, the p-modulated hybrid
strategies show the same trend (figure omitted due to space
constraints).

7 Conclusions

Our work has demonstrated that enhancing the down-
load scheduling schemes offers significant improvements
in the real-time playback performance of stored media in
BitTorrent-like networks. We measure the performance
of uninterrupted playback through a metric called play-
back continuity. In our BitTorrent-like system, we com-
bine earliest-first and rarest-first scheduling strategies and
measure the playback continuity using a static ratio of those
strategies. We also implement a mechanism for dynam-
ically adjusting the ratio of the strategies based upon the
number of contiguous pieces at the playback deadline that
have been downloaded by a peer. We also explore the ef-
fect of coding techniques such as Growth codes and Digital
Fountain codes on the playback continuity by substituting
those codes for the rarest-first part of the non-coding hybrid
strategy.

Motivated by our positive results so far, we intend to in-
vestigate, as future directions of research, analytical models
which can express our download strategies in P2P streaming
networks and study if they can explain our current results
mathematically.
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